
All SYSTEM/360 functional characteristics having programming sig-
nificance are completely and concisely described.

The description, which is formal rather than verbal, is accomplished
by a set of programs, interacting through common variables, used
in conjunction with auxiliary tables.

The language used in the programs involves operators and notation
selected from mathematics and logic, together with additional opera-
tors and conventions defined to facilitate system description.

Although the formal description is complete and self-contained, text
is provided as an aid to initial study.

Examples to illustrate the application of the formal description are
given in an appendix.

A formal description of SYSTEM/360
by A. D. Falkoff, K. E. Iverson,
and E. H. Sussenguth

This paper presents a precise formal description of a complete
computer system, the IBM SYSTEM/360. The description is func-
tional: it describes the behavior of the machine as seen by the
programmer, irrespective of any particular physical implemention,
and expressly specifies the state of every register or facility acces-
sible to the programmer for every moment of system operation
at which this information is actually available.

The work is based on the SYSTEM/360 manual' and on inter-
pretations and revisions furnished by the system architects, some
of whom have assisted in a thorough audit of the present de-
scription."

The formal description comprises a set of programs and
auxiliary tables, all of which are grouped for easy cross-reference
beginning on page 240.3 These provide a complete, self-contained
description of the system which, after some familiarity with the
notation and programs is gained, will be found more convenient
for reference than verbal description. An appendix furnishes
examples of reference use of the material. The remainder of the
text is designed primarily as a guide and aid in the initial reading
of the programs.

The second and third sections describe the central processing
unit and the input/output system, respectively. The first section
defines the notation employed and illustrates its use. Further
illustrations may be found in the references 4, 5, 6.
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The notation

A system is described by a collection of interacting programs, each
program consisting of a list of statements executed in an alterable,
but specified, sequence. The interaction between programs occurs
through shared variables and through direct alteration of the
sequence in one program by another.

Statements are of two major types, called specification and
branch. A specification statement incorporates a left-pointing
arrow and implies that its execution respecifies the value of the
variable to the left of the arrow by the value of the expression to
the right of the arrow. Thus, if x and y have values 3 and 4, re-
spectively, the execution of the specification statement

Zf-x+y
sets the variable Z to the value 7.

The statements of a program are numbered serially from zero
and are executed in serial order except that the execution of a
branch statement may interrupt the sequence. One type of branch
has the form

~a,n

and implies that Program a immediately executes its statement
numbered n (to be referred to hereafter as line n) and proceeds
from there. If the foregoing branch statement occurs in Program {3
(where (3 ~ a), the sequence in Program {3 is not affected. For
example, the execution of line 1 of IPL, the initial program load
program (page 259) resets CPU, the central processing unit
program, to its line 0 but does not affect the sequence in IPL,
which continues to line 2.

In the more familiar case the branch statement ~ a, n occurs
in Program a, and the program name is elided to yield the form
~ n. Line 11 of the CPU program furnishes an example, causing
a branch to one of lines 12, 14, 13, 17, or 19 according to which
component of the vector (12, 14, 13, 17, 19) is selected by the
index n2 • The statement itself completely specifies the branch,
and the broken arrows from line 11 to each of its potential suc-
cessors are provided merely as a graphic aid to comprehension.

Solid arrows from line to line are, however, used as an alter-
native specification of branching within a given program. An un-
labelled arrow denotes an unconditional branch; thus line 12 of
the CPU program is invariably followed by line 16. A solid arrow
labelled with a relation <R and emanating from a line containing
a statement of the form

x:y
implies that the branch arrow is followed if and only if the relation
x<Ry holds. Thus line 40 of the CPU is followed by line 1 if PH = 0,
and by line 25 if PH ~ O. In following branch arrows that cross,
the path does not change direction at a crossing.
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Dejinilion(f)

z == %0, xI, ... J X(IIX)-l, Yo, Yt, •.. , Y(lig)-l

Zo = x; Z, =y

=0

Dimension of 10 is n. The n
may be omitted if it is clear
from context.

o is any binary operator or
relation. The case X ~ Y is
the ordinary matrix product.
The expressions X ~~ v,
x ~~ Y, and x :~ y are treated
as in matrix algebra. Thus
x ~ y is the scalar product.

All operations are extended
component-by-component to
dimensionally compatible
vectors and matrices. If one
of the operands is a scalar, it I

is treated as a vector or ma-
trix of appropriate dimension
whose eomponents are all
equal. Examples:

z+-x+y
z<-xXy

W<--U/\V
w<-xr'y
w<-x<y

jXi E ith row vector
Xi E jth column vector

I'X E number of rows
p X E number of columns

[

ZO ••• Z"_I ]
Zn ••••••••

z, Thus X = .
••• z(mxn)_J

pX E number of components

uf z = u/y.

Z E Xo 0 XI 0 ... 0 x(,x)-'
Z, E 0/X'
Zi E 0/Xi
Z; E 0'; X' 0, r,

Usual definitions

z =- maximum of x and -x

k:O;x<k+l Ik-l<x:O;k k,m,n,q
n E (m X q) + k, integers

O:O;k<m

Ii/z = Ii/x;
Zi == zmi
Z' =xm's, =Xm ,
10 ee ai(pu) and j is maximum for which /\/w/u = 1

z obtained by suppressing from X each X, for which u,
Z' = u/X'
Zi =u/Xi
Z == Xu, Xl, '" J X(pX)-t

I'X =m, pX =n, andE/X =

z is the base-lO value of the vector x
z is the base-2 value of the vector u
z, E -.L u'

z; = Xi; j = (-x) I i + k} cyclic left (right) rotation of
z, = Xi;j = (_x) I i k X by k places.
z = w' /\ k t x } ~eft (right) shift br~n.ging zeros
z = ii' /\ k 1 x into evacuated positrons

pZEnandlO-.Lz lO"lj
vu ea nand -.L u = 2" I j

Wi == 1
10, = (V/i = j)
10, = (i <j)
10, ss «n - i) :0;j)
W EO or 1 (arbitrary)
1O,=Oorl
10, =0 or 1 but +/10 i
Z =i,i + 1, '" ,i + n

} j
" E l and V
u == 1 or v

w",lif "EO
and only if " E 0

xffiy is true

Table 1 Natation

Operation NQtalion(f)

Scalar x
UJ Vector x
A
l2;

~
re Matrix X0

Arithmetic +-X
~ Absolute value z +-1 xo
iil Floor k +-L x
1>1 Ceiling k +-f x::?1p Residue modulo m k+-mln
l2;

'"~ And w~ul\v

~ Or 11' ~u Vv
0

{ W~Ua Negation
0 '1/) of- ,-..,..u
>-'l Relation w +-xffiy

Reduction z +-0/x
l2; Row reduction z<- 0/X0
I=: Column reduction z<-0//X
o Matrix product Z *- X ~~ Yp
A
~

~
Base 10 value z <-10 -.L x

{ z<--.Lu
~

Base 2 value z .... -.LU
1>1 Representation

z .... lO(n) TjUJ base lO..:
III base 2 u .... (n) T j

Catenation z ....x, y
Row catenation Z .... x $ y
Compression

vector z .... uf x
row Z .... u/X

l2; column Z<-u//X
0 row list z .... E/XI=: Row list expansion X .... E(m, n)\zo
1>1
>-'l
1>1 Mask z .... [x; u; y/UJ

{ Z +-xm
Indexing Z .... X'"

Z .... Xm
Maximum prefix 10 .... a/u

c Left rotation z .... k t x
~ Right rotation z .... k l x
E-< Left shift z<-kJxr<o....

z<--k!x:I: Right shift
UJ

UJ Full 10 <-E(n)
~ Characteristic 10 <- Ei(n)0
E-< Prefix 10 <- ai(n)
o Suffix 10 <-- ..i(n)
~ { w .... t
3 Random lD .... 1(n)
o lD <-Nn)
re Interval Z <- ,i(n)
UJ
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Table 1 (Continued)

p '" [0 1 1J
1 °1

[
0 1 2 3 4J

A"'12345
2 3 4 5 6

CD The notation for each operation is only the por-
tion to the right of the specification arrow; the
variable to the left facilitates definition.

® Throughout this paper elementary operations
occurring in compound expressions are, except
as indieated by parentheses, exeeuted in strict
order from right to left. In this table the sym-
bol '" is used instead of = to denote equality,
since the latter denotes an operator of the class
ffi.

@ The following arguments are used in the
examples:
a '" 7, -6, 5, -4,3
b '" 3, 2, 1
c :::= 0, 0, 1, 1,0, 1, 1, 1
n '" any logical vector

(n, es °or 1)
p", 1,0,1,0,1
q sa 1,0, 1
T se -t-, -, X, -7-

1-------------·--------------------·1

Examples@

a1:::= -6
To'" +

2 X b '" b X 2 '" 6, 4, 2
I -3.6 aa 3.6

L3.6 ss 3
r3.6 ez 4

7119 '" 5
Po /\ qo '" 1
Po vs, '" 1

iio sa ~qo sa °
a, =s; e, '" 1

b + q sa 4,2,2
b To q sa 4, 2, 2

b X b '" 9,4,1
I q - 3 22,3,2
L-3.6 sa -4r-362 -3

7121 '" °
q /\ po '" 0, 0, 1
q V po ssa 1,1,1

~q /\ po sa ii V po '" 1,1, °
b < Al es 0,0,1
2 < Al sa 0, 0, 1

Ao '" 0, 1,2
P' es q

a - AO sa 7, -7,3, -7, -1
1 a - AO '" 7, 7, 3, 7, 1

La -i- 2 sa 3, -3,2, -2, 1ra + 2 sa 4, -3, 3, -2, 2
2 I a es 2 1 a X a ss 1, 0, 1, 0, 1

q /\ 2 1 b '" q '" A: /\ q
qV2lb"'q

qo ,,; P '" P '" ~ qo = P

P (d q es ~P ':f, q '" 0, 1

+Ia '" 5
+IA '" 10, 15,20

+II A sa 3, 6, s, 12, I.';

P + A sa [3 57g 11J
x 246810

T,fa 22520
,,;IP es 0, °

"'liP'" 1,1, °
/\In'''~VI~n

/\IP sa ~ V/~p

,,;IP '" 21 +IP '" ~ =11>
XIA ea 0, 120,720
"'In '" ~ = I~n

10 J..- b '" 321
J..- P '" 3, 5

10(3) T 144 sa 1, 4, 4
(4) T 13 '" 1, 1,0, 1

J..-q"'5
J..- 2 1 A '" 10,21, 10

10(2) T 144 '" 4,4
(3) T 13 '" 1,0,1

10(4) T 144 '" 0, 1,4,4
(5) T 13 ss 0, 1, 1, 0, 1

P '" (0, 1) (f> (1, 0) (f> (1, 1) '" "(2) 6J ,0(2) (f> ,0,1(2)
A sa ,°(3) (f> ,'(3) 6J ,'(3) 6J ,3(3) 6J ,'(3)

P, b '" 1,0,1,0,1,3,2,1 qlb 2 3, 1 "qlb", +Iq 2 2
(2 I AO)/A' '" 2,4 (a> O)la '" 7,5,3

[
0 2 4J ~ [0 1 2 3 4J ~ 0,2

PIA'" 135 ",Ao" " qlIA- 23456- A

246

[

7 -615 -4
E(4, 2)\a, b '" ~ ~

Ib; Po; ql '" q
Q,2(2) =:::; 5, -4

EIA ses 0, 1,2,3,4,1,2,3,4,5,2,3,4,5,6

[a; P; AOI '" 0, -6, 2, -4,4
aO,3,1 sa 7, -4, -G bq sa 2,3,2
ale == 1, 1,0,0,0,0,0,0 alP sa 1,0,0,0,0

+la/n == number of leading zeros in n == »n or index of leading 1 in n

2 TA' '" 3, 4, 5, 1, 2
3 1 A' '" 3, 4, 5, 1, 2
2 rAI ", 3, 4, 5, 0, °
2 rA' '" 0, 0, 0, 1, 2

2 TP '" 1,0, 1, 1, °
(21 ,,3(8))/c 2 1, 1, °

(0 =s; J..- 7 (k)) /\ «J..- 7 (k)) < 2') '" 1

,(4) sa 1,1, 1, I
,1,2"(5) '" 0, 1, 1,0, 1

,,'(5) sa 1, 1,0,0, °
",'(5) '" 0,0, 0, 1, 1
,'(5) '" 2, 3, 4, 5, 6
7(2) sss 0, °or 0, 1 or 1, °or 1, 1

72(3) es 0, 1, 1 or 1, 0, 1 or 1, 1, °

i( 4) '" 0, 0, 0, °
i A'( 8 ) '" 0,0,1,1,1,1,1, °

,,'(5)la '" 7, -6
.,3/(;,'lc '" 1,0,1

C,2(5) aa I, 1,0,1,1

i 2(4 ) sa 1, 1,0, 1

(1 1 ,,'(5))la '" -6,5
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Figure 1 Tree representation of
a compound statement

p

3

202

For brevity, branch and specification statements are sometimes
combined in the form

z:y+...-.x

implying that y is specified by x and is then compared with z to
determine a branch.

The operand types and elementary operators employed are
defined in Table 1, together with examples. These examples permit
Table 1 to be studied by itself before proceeding to the more
complex expressions in the programs.

In a compound expression such as

(x X y + z) - q I\. ,..., r

the order of execution of the elementary operations is determined
by parentheses in the usual way and any remaining ambiguity
is resolved by proceeding from right to left, no priorities being
accorded to multiplication or any other operator. This convention
applies, in particular, to Table 1 itself.

The convenience of the right-to-left order of execution is
indicated by the paucity of parentheses in the programs. As an
example, consider line 5 of the CPU program:

(il4/p +...-. (24)T2 + .1.(,r/p.
Proceeding from right to left, the last 24 bits of the vector p
are selected, the base-2 value of the resulting vector is taken and
added to 2, and finally the 24-bit representation of the sum
respecifies the last 24 bits of p.

In complex logical expressions, the right-to-left convention
permits convenient interpretation from left to right; for example,
the expression

pVqVrl\.sl\.l=3
is interpreted as indicated by the tree shown in Figure l.

No elision of operator symbols is permitted; consequently, the
names of variables can, without ambiguity, consist of any number
of alphabetic characters, including spaces. For brevity, single
characters are used for all variables except for those which occur
infrequently, such as the panel switches occurring in CP, the
control panel program. All variable names are in italics: light-
face lower case for scalars, boldface lower case for vectors, and
boldface upper case for matrices. Literal alphabetic values (e.g.,
"stop" and "operate" on lines 12 and 13 of the CP program) are
denoted by roman type.

In order to reduce the number of variable symbols assigned
to local counters and other intermediate variables, certain symbols
(including i, i, k, i, i, and k) will be used only as local variables,
i.e., the value of any such variable will be relevant only in the
program in which it occurs and will not affect or be affected by
any variable of the same name occurring in another program.
A family of matrices will be denoted by a pre-superscript as, for
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example, 'J, in line 20 of MAC' U; k), the memory access program.
The system description comprises a set of tables and programs.

Programs include system programs and defined operations. All
system programs operate concurrently and continuously, with
precisely one line active in each program at all times. This active
line will often be a dwell of the form shown in Figure 2. The
program breaks from the dwell only when the variable x is set
to a nonzero value by some other program in the system.

A defined operation is a program which operates only when
invoked by some other program. It can be distinguished from a
system program by the presence of exit arrows. When called, a
defined operation constitutes the active line of the program it is
serving, and will itself have precisely one line active at a time
until an exit is reached.

Variables occurring in the name of a defined operation (for
example, j and k in the case of MAC'(j; k» are dummy variables
whose values are determined by the values of the variables occur-
ring in any particular use of the defined operation. Thus, the
performance of line d3 of EXC (that is, M AC9 (a2 , 2, f, d; (,)16/ Ra.»
executes MAC9 with j = (a2, 2, f, d) and with k = (,)16/ Ra-.

A study of MAC will show that this causes 2 bytes of data, fetched
from the memory location starting at a2, to be transferred to the
last sixteen positions of the general register whose index is aI-

All components of the formal system are listed in Table 2.
The text and figures, and the tables not listed, are intended for
exposition only.

Table 2 Components of formal description

System programs

Figure 2 Dwell9."

BMT
CHc
CP
CPU
EIE
EP
ES

Burst-mode timer
Channels
Control panel
Central processing unit
External interruption entry
Emergency pull
External signals

page

261
261
259
259
259
259
259

HFCc
IOIE
IPL
MCIE
T
TOLc
TU

Hardware failure in channels
I/O interruption entry
Initial program load
Machine check interruption entry
Timer
Time-out limiters
Timer update

page

261
261
259
259
259
261
259

Defined operations
DELAY
DIAGNOSE
EXC Instruction execution
MAC'U; k) Memory access
MALFUNCTION RESET

* These operations are not detailed in this description.

Tables

page

*
*

240
259

*

MODEL-DEPENDENT RESET
POWER-OFF SEQUENCE
POWER-ON SEQUENCE
RESET
SYSTEM STOP

page...
*...

259
*

page

Table 3 System reference table for programs and variables: symbol and dimension columns only 250

Table 5 Navigation matrix N and reference table: first 11 columns (navigation matrix) only

Table 6 Operation decoding matrix 0: numerical entries only
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Table 4 Central processing unit
program segments

CPU
Functions lines

Initial-program-load 0
dwell

Instruction fetch 1-7
Instruction interpre- 8-10

tation
Effective address cal- 11-19

culation
Instruction execution 20-21
Entry of program 22-24

interruption
Interruption service 25-33
Single-step, stop, and 34-36

wait tests

CPU program

instruction fetch
(lines 1-7)

instruction
interpretation
(lines 8-10)

204

The central processing unit
The central processing system comprises the nine system pro-
grams shown on page 259, and the defined operations listed in
Table 2. An overall view of the system can be gained from Table 3,
which lists all variables occurring in the programs, indicates the
meaning or significance of each symbol and the dimensions of
each vector or matrix variable, and provides reference to every
program statement (or entire program) in which each variable is
specified or used. Since the range of each variable is readily de-
duced from its use in the programs, ranges are not explicitly
specified in the table. Most of the variables are logical (i.e., have
the range 0, 1), but some, such as the components of a, m, and
N, are not. The ranges of the components of some arrays (e.g., N)
are not all alike.

Although Table 3 is designed for reference, it will also repay
careful initial study. It shows, for example, that the memory M
behaves as a 9-bit wide memory of at most 224 8-bit bytes with
parity, that each block of 211 bytes of M may be protected by a
4-bit protection key s', and that 16 single-word general registers
Rand 4 double-word floating-point registers F are provided. All
of the more detailed information on the treatment of the variables
(such as the formats used in instruction addresses) is immediately
available in the programs.

The core of the system is the CPU program, which describes the
sequencing and execution of instructions and the servicing of
interruptions. The functional segments of this program are listed
in Table 4.

An instruction may be 1, 2, or 3 half-words long and is fetched
by lines 3-7 (using the MAC operation detailed on page 259), two
bytes at a time, from memory locations specified by the instruction
counter represented by ,,/ 4j p, the last 24 bits of the program status
word p. For each half-word fetched, the instruction length code
(P32 .33) is augmented by 1 (line 4) and the instruction address by 2.
The sum of the first 2 bits of the first half-word plus 1 determines
(on line 7) the number of half-words fetched.

Line 2 enters a specification exception if the protection feature
is not installed (m; 0) and any of positions 8-11 of p are nonzero.
Addressing and specification exceptions are detected by lines 7-8
of the MAC operation and are entered (MAC line 15) into is
and i6 , respectively. Either of these errors subsequently causes a
branch from CPU line 6 to line 24, skipping the instruction execu-
tion phase and any remaining portion of the fetch.

If the fetch concludes without error, lines 8-9 interpret the
instruction by selecting from the navigation matrix N (Table 5)
a row N i to specify the vector n used in the subsequent control
of the instruction execution phase. The row of N selected is de-
termined by the particular element of the operation decoding
matrix 0 (Table 6) selected by the 8-bit operation code in the
first byte of the instruction. Table 6 displays the mnemonics
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used for the instructions as well as the index to N, which is the
only formal part of the matrix O. Similarly, Table 5 includes
much informal information in addition to the formal specification
of the matrix N.

Except for its first two components, the navigation vector n
is of formal interest only, since the sequences it determines in
the CPU program (line 11) and in the EXC operation are also
indicated informally by broken-line arrows and labels. If the
8-bit operation code corresponds to no installed operation, then
no = 0 and an operation exception exists (line 10); if the operation
is privileged (n, 1) and if P15 = 1 (that is, the processor is
in the problem state as opposed to the supervisor state), a privileged
operation exception exists.

The manner of specifying the operands of an instruction is a
function of the format of that instruction. Most instructions specify
two operands; the effective addresses of the first and second operands
are computed as a1 and a2, respectively. Normally, the addresses
are used to select two general registers (RR format), a register
and storage in memory (RS), a register and storage with a second
register for indexing (RX), two areas in storage (SS) or storage
and immediate data from the instruction itself (SI), all as indicated
in Table 7. However, since many exceptions exist, Table 7 should
be considered as a guide only, all operands being explicitly de-
fined in EXC. Some instructions in the RS format use a third
address aa. A terminal R and a terminal I in instruction mnemonics
usually indicate the RR and SI formats, respectively.

For instructions in the SS format, the lengths of the operands
are defined by line 17; 11 + 1 and 12 + 1 are the lengths (in bytes)
of the first and second operands, and 10 + 1 is the length for some
instructions in which a single length is required. Again, the matrix
N (and hence n) provides (via CPU line 11) the formal specifica-
tion of the format used by each instruction.

The calculation of the effective addresses is straightforward
and will be discussed only for the RX and RS cases. In the latter
case, the second operand address a2 is determined by the second
half-word of the instruction and is formed by adding to the value
of its last 12 bits (.1w 12 j t) the value of the general register selected
by its first 4 bits (.1 RJ."·/['), unless the zeroth register is selected
(0 = .1 a4 j t), in which case zero is added. Finally, the residue of
this sum modulo 224 specifies a2 • The first and third operand ad-
dresses are determined by the values of groups of 4 bits in the first
half-word, .1<·ljw4jIO and .1w4/1°, respectively. The RX format
differs only in that the index quantity contained in the general
register selected by the last 4 bits of the first half-word
is (again, unless the zeroth register is selected) also added to the
sum used to determine a2 , and in that the third address is not
applicable.

The calculation of the effective address is immediately followed
by a use of the defined operation EXC on line 20. This operation
begins with a branch from line 0 to line na, that is, to the segment

FOR:\iAL DESCRIPTION OF SYSTKM/360

effective address
calculation
(lines 11-19)

instruction
execution
(lines 20-21)
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entry of program
interruption
(lines 22-24)

interruption
service
(lines 25-33)

206

of the EXC operation appropriate to the particular instruction
being executed. For example, if the instruction is LR, then n3

is specified by N;\ and n3 = dO. This is also indicated informally
by the "LR" written to the left of line dO.

To continue the example, line dO specifies the value of general
register Ra, by the value of Ra. , and the exit arrow on the same
line indicates that EXC is complete.

The execute instruction (EX) beginning on line bO, furnishes a
somewhat more complex example of the execution phase. Except
that the length code P32.33 and the instruction counter (,)241pare
not disturbed, lines bO-3 are like the instruction fetch (CPU 3-7)
and therefore load the instruction register with the data beginning
at byte address a2 in memory. Since n3 = bO in this case, line 21
of CPU subsequently causes (unless a program interruption has
been entered in t, either on line b5 or by use of MAC on line b1)
a branch to line 8, thus interpreting and executing the instruction
just fetched by the EX instruction, without disturbing the in-
struction counter. If this subject instruction is itself an EX, it has
the operation code 0100 0100, and line b5 therefore enters an
execute exception and line 21 does not cause a branch, thus
aborting the execution of the subject EX instruction. The phrase
1s /\ 16 in line b5 prevents a spurious execute exception if address-
ing or specification exceptions have already occurred.

If the first operand address of EX is nonzero, then line b4 will
or the last byte of general register ~, with the last byte of the
first half-word of the subject instruction. This permits a pro-
grammer to specify such parameters as length, index, or im-
mediate data in the subject instruction indirectly via Ra, .

If no program interruption has been generated by the preceding
fetch and execution, each component of t will be zero, and lines
23 and 24 will be skipped. Otherwise line 24 presents the inter-
ruption by setting h, to 1 and entering an appropriate code in
positions 16-31 of p. Thus, if the interruption is occasioned by an
addressing exception, t, = 1, the expression tl,O yields 5, and
its base 2 representation (namely, 0000 0000 0000 0101) is
entered in p. If multiple causes of program interruption occur,
then one of the appropriate codes will be selected at random and
stored in p. For example, if t s = t6 = 1, then tl,O = (5, 6) and
?l/(5, 6) selects one of 5 and 6.

If the cause of the program interruption entry is neither t4

nor t, (that is, neither a protection nor an addressing exception),
then the instruction length code P32,33 is unchanged by line 23;
otherwise line 23 may set the length code to zero.

Other types of interruptions are entered in other components
of h by other programs (listed in the reference column of Table 3)
whose details will be considered later.

An interruption service places an appropriate code in bits
16-31 of p, stores p in memory at one of five fixed locations deter-
mined by the type of interruption (line 31), and finally respecifies
p (line 32) from one of five other fixed memory locations. Since
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this respecifies the instruction counter (j)24/p, it oeeasions an
alteration in the normal sequence of instructions.

Interruption servicing is skipped if the expression

V /h /\ (0, 1, 1, P7' «X7/p) X Bg)

{line 25) has the value zero. The vector (0, 1, 1, P7, «X7/p) X Bs)
is therefore a mask which causes certain components of h to be
ignored. Thus ho (machine check interruption) is always ignored
at this point, h, and hz (program and supervisor call interruptions)
never are, ha (external) is ignored if P7 = 0, and h4 (I/O) is ignored
unless an interruption is being presented (in Bg) by one of the
channels for which the corresponding mask bit in (X7 / P is set to 1.

If there is an acceptable interruption, then line 26 determines
h as the index (in h) of the interruption to be serviced. The queue
discipline in h is not first-in first-out but rather strict priority
(according to position in h) of the unmasked components of h
presented.

If h = 0, 3, or 4 (machine check, external, or I/O), then go
is set to signal the appropriate program (MC/E, EIE, or IDlE)
to enter the appropriate data in bits 16-31 of P, while the CPU
program dwells on line 28. Then the accepted interruption indi-
cation is reset on line 29. In certain situations, an I/O channel
is unable to present an indicated interruption at the time it is
accepted by the CPU; this is signalled by the I OlE program by
setting gl to 1 before resetting go to 0, thus aborting the interrup-
tion by the branch on line 30. In any event, line 25 is executed
again so that all outstanding unmasked interruptions are serviced
in turn before continuing to line 34.

Whenever the program status word p is loaded from memory,
bits 16-33 (the interruption code and instruction length code)
are indeterminate as shown by CPU 33, /PL 8, and EXC a26.

If the operating state is set to "stop", then the CPU dwells
on line 35 with the manual light "on". Events which set the operat-
ing state are listed in Table 3. These include line 34 of the CPU
which sets it to "stop" if the rate switch is not set to "process",
e.g., if set to "single-step".

Subsequent to the dwell on line 35, the behavior is determined
by the wait bit P14; if P14 = 0, the wait light is turned "off" and the
next instruction fetch is begun (branch from line 36 to line 1);
if P14 = 1, the wait light is turned "on" and the interruption
service phase is entered at line 25. Hence if P14 = 1, the CPU
"waits", executing no further instructions until an external or
I/O interruption or initial program load replaces p with a value
such that Pl4 = 0.

The computer memory is initially loaded by the IPL program
which resets (line 1) the CPU to the dwell at line 0, where it re-
mains until the loading (effected by an I/O channel) is complete,
as signalled by the setting of the variable ipl to zero. The branch to
line 25 shows that when loading is complete, operation is resumed
with interruption service rather than with the instruction fetch.
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The MAC operation, which occurs in the instruction fetch and
throughout the EXC operation, serves to fetch from or store
in memory a specified number of bytes beginning at a specified
address. Because it incorporates certain tests and other functions,
it warrants a detailed scrutiny.

The general form of the MAC operation is MAC i (j; k), where
i specifies one of nine identical but independent MAC programs,
i = 9 for the CPU memory-access, i = 8 for the interval timer,
and i = 0-6 for the channels; where k is the vector involved
in the transfer to or from memory; and where j is a four-com-
ponent vector specifying the address in memory (jo), the number
of bytes transferred (j,), the performance of a fetch (j2 = f)
or store (j2 = s), and the type of address being treated (ja = d
for data address, i for instruction address, g for a machine-
generated [i.e., fixed] address, and h for hold, which prevents
any of the other MAC' programs from operating until the cur-
rent MAC' program has been used again with j, ~ h).

Since the several MAC' programs all use the same memory,
they must observe a queue discipline. It is controlled by the
queue vector q and the request vector r. When MAC' is invoked
by any system program (e.g., MAC

g
in CPU line 3), then a re-

quest for service is entered (line 0) by setting r. to 1. If the queue
is empty, the request is also entered in q•. In any case, the MAC'
program dwells on line 1 until i is recognized as the "first" non-
zero entry in the queue. The queue discipline is not first-in first-
out, but is in order by position in a permutation of q specified
by the vector rank, which gives priority according to the index i,
except that i = 0 (the multiplexor channel) may be assigned out of
order. This implies that the channels have priority over the interval
timer which has priority over the CPU.

Any request for service which is not entered directly in q on
line 0 is entered from r by line 24. If ja ~ h, then q is respecified
by r (with r, already set to zero by line 2) except that a CPU re-
quest is entered in qg only if w = O. The variable w is controlled
(line 2) only by MAC8

, the timer update memory-access, and it
remains at 0 or 1 according to whether the last use of MACs was
for a store or for a fetch. This excludes the CPU from memory
during the updating of the interval counter (TU lines 1, 3) and
prevents the inadvertent overwriting (by TU line 3) of a new
setting of the interval timer counter by a CPU "store" instruction.
However, the use of memory by I/O is not excluded by w.

If i, = h, line 24 leaves q unchanged and therefore prevents
any other MAC from being executed until after the next use of the
same MAC with i, ~ h. The use of ja = h occurs only in the
instruction TS (test and set) as follows (EXC lines a29, 30)

MACg(a
"

1, f, h; u)
MACg(ah 1, s, d; f (8)).

Thus, the addressed byte is set immediately following a test of
its value, before any other access to memory can occur.
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The first 212 bytes of memory are normally used for special
purposes by the machine (e.g., 48, 40, 32, 24, and 56 are used to
store p on line 31 of the CPU program) and by the supervisory
program. Any address jo in this region is automatically prefixed
(MAC lines 3,4) by a 12-bit prefix selected from either the
main or alternate prefix (having wired-in values) according to
the setting of the prefix trigger, which is set during the initial
program loading (lPL line 3). It must be emphasized that every
memory address (including those used in I/O) below 212 is modified
in this way, although this fact will not be referred to again in
the text.

The effect of line 6 is to set the operating state to "stop" if
all but the last bits of the address switch on the console agree
with the specified address jo, but line 6 is skipped if the address
compare switch is on "normal" or if it is set to "instruction" and
ja does not specify that i, is an instruction address.

Lines 7-11 specify three types of exception conditions. A
specification exception is indicated (line 7) if the address jo is
not divisible by the number of bytes jl' An addressing exception
is indicated (line 8) if the address jo exceeds the size of memory,
and in this event the address jo is respecified for all subsequent
purposes by an arbitrary value within the range of the memory
(line 9). A protection exception is indicated (lines 10,11) if the
machine has the protection feature (m; = 1) and the memory-
access is of the store data type (j2.3 = S, d) and the keys Uo and
U1 differ and neither is zero, where Uo is the protection key in
the memory bank addressed by i-; and U 1 is either the protection
key in P (in the case of a CPU memory-access) or the protection
key in the appropriate channel address word (in an I/O memory-
access).

If there are multiple exceptions, line 13 chooses some one of
them to enter into s and thence into the program exceptions
vector t (in the case of CPU or timer memory-access) or in the
channel status word S' (in the case of a channel). If the error is
a specification exception (so = 1) or if the operation is a store,
then line 17 skips all further steps except to respecify the queue
(line 24). Otherwise, i.e., on a fetch operation with an addressing
exception, in which the address jo has been respecified arbitrarily
(line 9), the (meaningless) fetch from memory proceeds.

If no exception occurs, or if a machine-generated address is
being treated, line 12 skips the entry of exceptions, branching
directly to line 18 which chooses line 23 for store and 19 for fetch.
Line 23 stores the specified vector k together with the appropriate
parity bits in the specified rows of M. Line 19 fetches the appro-
priate rows of M to specify the matrix 'J. The row list of the last 8
columns of 'J specifies k, and the parity bits are available (e.g. to
the channel) in 'Jo• In the case of a CPU or a TU memory-access,
line 22 checks the parity of the data fetched from memory and
signals an error by setting component 9 or 8 of the machine failure
vector f.
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The details of the control panel, the interruption entries, the
interval timer, the initial program load, and the EXC operation
will now be treated in that order. At this point, however, the
reader should be equally prepared to approach them in any other
desired order. It must be re-emphasized that all system programs,
including the CPU program, run concurrently.

The normal dwell of the CP program (lines 4,5) is broken by
depression of the power-off key (line 4) or by depression of a con-
sole button b, or by a pulse on one of the IPL in-lines e4 or e5'
Line 6 determines b as the index (with respect to e., es, b) of the
signal to be serviced, line 7 dwells until the signal returns to zero,
and line 8 branches to the appropriate program segment.

The last four buttons are ineffective if the machine is in the
"operate" state (line 13), but otherwise perform the straight-
forward functions detailed in lines 15-25. The stop key (line 12)
causes the CPU to dwell the next time it reaches line 35; the
interrupt key sets the console interrupt which (as indicated in
Table 3) is used in the EIE program to enter an external inter-
ruption; the IPL in-lines, the load key and the reset key all reset
the system (line 9), and all but the latter set ipl, releasing the IPL
program from its normal dwell.

The EP program serves to stop the entire system until the
emergency pull switch is restored, whereupon it sets the CP program
to line 1, to dwell until the power-on key is depressed.

The timing signal in-lines (,)6/E3 are momentary pulses (t to 1
microsecond) supplied from some data transmission line, perhaps
the output signals E2 of some co-operating computer. The ES
program shows the latches external signals being set by (,)6/~.

Similarly, EIE shows the timer alarm, console interrupt, and
external signals being entered as interruptions. If any of these
signals appear, EIE line 0 sets tu, The CPU program will event-
ually recognize ha and set h = 3 and go = 1 (lines 26,27), thus
breaking the dwell on lines 0 and 1 of the EIE program. Line 2
then enters the eight external interruptions in p and line 3 resets
those signals entered, but does not reset any which may have
come on during the brief interval since the entry operation on
the preceding line. The reset of go on line 4 frees the CPU from
its dwell on line 28.

The entry of a machine check (i.e., a hardware failure) is
radically different, since, after setting ho, it preempts the CPU
by causing a branch to CPU line 26. The MCIE program also
sends a momentary signal on the machine-check out-line e«
(which may be connected as an input to some co-operating com-
puter), enters zeros as the interruption code in p, performs a
diagnosis, stores certain machine registers (referred to as cpu
status) in memory beginning at byte 128, and finally resets go
(to free the CPU), the failure vector I, and any outstanding
program and supervisor call interruptions (but not external or
I/O interruptions). The machine failure is serviced (line 0) only
when the machine check mask P13 = L
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Indications of machine failure are entered in f from various
sources, but only two are shown in this description. One occurs
on line 4 of HFC for hardware failures in certain I/O channels.
The second occurs on line 22 of MAC, and detects parity er-
rors in data fetched from memory for the CPU or the interval
timer. Parity checks are also made on R, F, and p, and at other
points, but none of these are shown explicitly in the programs.
Their inclusion would merely encumber the description.

The TU program is activated by the signal tick from the T
program, but only if the CPU is not stopped at the dwell on lines
36-37, the rate switch is set to "process", and an RDD (read direct)
instruction is not awaiting a hold-in signal on e2 • When acti-
vated, line 1 fetches the four bytes representing the interval
timer counter, line 2 decreases it (modulo 23 2

) by an amount
dependent on the timer frequency which drives the T program,
line 3 restores the new count to memory, and line 4 sets the
timer alarm if the count has passed through zero. The execution
of MACs on lines 1 and 3 will, of course, be deferred until all
I/O requests for memory access have been serviced. Moreover,
no CPU memory-access can intervene between TU lines 1 and 3
(see MAC lines 2, 24).

The IPL program dwells at line 0 until ipl (set only by CP line
10) becomes 1, whereupon the CPU is forced to its dwell at line 0,
and the load light is turned "on". The further behavior depends
upon which agency (IPL in-lines or load key) initiated the action.
If it were the load key, the program would dwell (line 5) awaiting
a satisfactory error-free channel-end signal from the I/O unit
designated by the setting of the load unit switch, store load unit
switch in memory at address 2, and load p from memory at address
O. If the initiating agency were one of the IPL in-lines, only the
loading of p would be performed.

If a machine failure occurs in the loading, the I PL program
dwells on line 9, regardless of the value of the machine check
mask; otherwise, line 10 turns the load light to " off", the operating
state to "operate", and ipl to zero. The role of I/O in the initial
program load will be clarified in the third section; here it will
suffice to remark that the I/O channels are reset by the RESET
occurring on line 9 of the CP program, and the I/O unit designated
by the load unit switch then begins to perform a read.

The 143 machine instructions described by the defined operation
EXC are grouped in twelve families. Because there is little inter-
action with other programs, the interpretation is straightforward,
and textual comment will therefore be limited to the more difficult
cases.

Table 5 can facilitate reference in many ways. The final
columns indicate the effect of each type of interruption on each
instruction; it may suppress the instruction so that none of the
result variables are affected, terminate it after some but not neces-
sarily all of the results are respecified (and all results must be
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considered unreliable), or allow it to complete. Since a protection
exception t, is occasioned only by storing in memory, the cor-
responding column of Table 5 can be used to identify all "store"
type instructions; similarly, column t, identifies all instructions
which refer to memory. Other columns of Table 5 identify those
instructions which set the condition code, general registers, and
Boating point registers.

SSM (set system mask) is a privileged operation executable
only in the supervisor mode (PIS = 0) as shown by the exit on
line a1 and the setting of t. on CPU line 10. ISK (insert storage key)
and SSK (set storage key) are also privileged and are also sup-
pressed (line a4) if the protection feature is not installed (that is,
mo = 0 and hence t, = no = mo = 1), if the address ..l(,)24/](,.
is outside the range of the memory, or if any of the last 4 bits
of ]('. are nonzero.

These last 4 bits of Ra• are not otherwise relevant to ISK

and SSK (see lines a6, 7) and the specification error test is intended
to prevent the programmer from using them for other purposes,
and hence to reserve them for use in possible modifications of
SYSTEM/360, such as an extension of the length of the protection
keys. The devious programmer can, of course, use a nonzero
final half-byte in ]('. to force a specification exception, but the
prudent programmer will not. Similar tests will be found else-
where (e.g., on the format of channel commands) and serve a
similar function.

Since SSM, SSK, and ISK are privileged instructions, only the
supervisor program can set the system mask or set or refer to
the memory protection keys s: SPM (set program mask) is not
privileged.

WRD (write direct) transfers one byte from memory to the
direct control out-lines EO and the immediate data byte from the
instruction register to the timing signal out-lines E2

, and sets
the write-out signal eo to 1. The signals E2 and eo are momentary;
EO remains unchanged until another WRD is executed. The test
for suppression of the instruction (line a9) includes the term t,
because the direct control feature is optional and may not be
installed, and the term t2 because WRD is privileged. Except for
the dwell on line a17, the behavior of RDD (read direct) is similar.
Normally, the outputs EO and E2 of one computer are connected
into the inputs E 1 and E3 of a co-operating computer. Programs
ES and EIE enter any nonzero signal on ~ as an interruption.

The diagnose instruction is privileged (as indicated by the
presence of t2 on line a20) and may also be suppressed by an
unsatisfactory address a l • It performs a certain diagnosis of the
hardware and then, for certain models, loads P using 8 bytes
beginning at 112. LPSW (load program status word), which is
also privileged, performs a similar load from memory at address a l •

sve (supervisor call) forces an interruption by setting h2 ; the
interruption code is the immediate data byte (,)8/T', prefixed by
8 zeros.
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TS (test and set) simply fetches one byte u from memory
(a29), sets the condition code to (0, uo), and sets the same byte
in memory to all l's. The significant characteristic of this in-
struction is that (because of the "hold" h in the first use of MAC)
it sets the tested byte in memory before any other reference to
memory can occur.

IDX (execute) was discussed in conjunction with the CPU
program. TM (test under mask) sets the condition code as shown
on line b7. Thus, the code is (0, 0) if the immediate data byte
((iN (1) is entirely zero; otherwise, the first bit is set to 1 if all
bits of «iN (1)/u are 1, whereas the second bit is set if any bit
of ((iN (1)/u is 1. The expression ((,)8/(1)/u denotes the components
of the byte u from memory which are extracted by the nonzero
bits of the immediate data byte.

The branch instructions set the instruction counter (,)24/P con-
ditionally as shown, and can therefore be used to alter the normal
sequence of instruction execution. A full appreciation of BXH
(branch on index high) and BXLE depends upon a knowledge
of the 2's complement representation of signed numbers, which
is also used in the fixed-point arithmetic instructions.

A logical vector (register) u of dimension d represents any
integer n in the range _2<1-1 to 2<1-1 - 1 in the form

n (..L u) - Uo X 2d
•

For example, if d = ;) the representation scheme is given III

Table 8.
It is easily verified that the representation of a number n

in the appropriate range is given by the statement

u~ /(d)Tn; (n < 0); ,-..,(d)T In + If.

Arithmetic operations (such as the summation occurring in BXH

(line b20» may, however, produce a result outside the repre-
sentable range. The representation shown above is, however, used
even in this case. The matter is illustrated in Table \) by examples
computed for a dimension d 4.

For the BXH instruction, lines b17-1 D show the specification
of ko, k 1 , and k 2 as the signed numbers represented in general
registers aI, a3 , and either a3 + I (if aa is even) or a3 (if a3 is odd).
Register a l is then respecified by the 2's complement representa-
tion of the sum ko + kl' The value of this result is compared with
k, (line b2;~) to determine whether to branch to a~.

The four I/O instructions arc all privileged (line cO), determine
a channel address from tho first three of the last eleven bits of
the first operand addross, test whether the indicated channel is
operational (line c2), and conclude by setting the condition code
to (1, 1) if it is not. If the channel selected is the multiplexor chan-
nel (i = 0) and a "burst mode" timer has not run out, then c.5
dwells for a maximum of about 100 microseconds hefore testing
(line c6) whether the channel is busy.

If the channel is busy, the condition code is set to (1, 0) on
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3 011
2 010
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23 - 1 o 1 1 1 +7
-23 1000 -8

-(23 + 1) 01 1 1 +7
-(23 + 2) 0110 +6

input/output
(lines cO-15)

213



load and store
general registers
(lines d0-24)

shifts
(lines eO-15)

logical operations,
compare logical
(lines f0-32)

214

line c7, and all instructions but RIO (halt I/O) conclude; RIO

proceeds to signal the channel to stop by setting B;o and then
dwells until the channel resets it to zero.

If the channel is not busy, line cll branches to conclude on
line c12 for TCR (test channel), and otherwise to set B10 and dwell
(c14, 15) awaiting a response from the channel. The dwell endures
until either B~o is reset by the channel or until (in the case of
the multiplexor channel only) the channel becomes busy (B~ = 1).
The latter case is followed by a repetition of the sequence from
line c4. This repetition could recur many times due to short bursts
of activity in the multiplexor channel instigated by I/O units
already in operation. Further discussion of the I/O instructions
will be deferred to the third section.

LH (load halfword) loads the last two bytes of Ra, from memory
and then, unless a specification exception has occurred in the
fetch from memory, extends the sign bit R~~ to the left to give
the correct 2's complement representation in the entire register.

LPR (load positive), LNR (load negative), LTR (load and test)
and LCR (load complement) illustrate the use of the 2's comple-
ment representation. Since line d11 sets the condition code to
(1, 1) only in the event of overflow, line d12 indicates a fixed
point overflow only if the overflow mask Pa6 = 1.

STM (store multiple) stores a number of general registers
beginning with a1 and continuing in cyclic order through register
aa. A specification exception suppresses the instruction since it
occurs on the first execution of line d14 before any data has been
transferred, but in the event of either a protection or addressing
exception all of the result field becomes unreliable (dI9-24).
LM (load multiple) behaves similarly except that a protection
exception cannot occur.

All single-length shifts operate on ~'; all double-length shifts
operate on the combined quantity Ra" Ra, +1 and cause a speci-
fication error (which suppresses the instruction) if a1 is odd. The
amount of shift is the residue modulo 64 of a2 ; zeros are introduced
in the evacuated positions for all except the arithmetic right shifts.

All of the arithmetic shifts shift the entire quantity except
the first bit (e8, 10) and set the condition code to (0, 1), (0, 0),
or (1,0) according as the result is <, ,or> zero, except that
the left shifts set it to (I, 1) if a significant digit (i.e., in the 2's
complement representation, one which differs from the leading
bit) is lost in the shift (e7). In this event the left shifts also set a
fixed point overflow exception (e9) if mask P36 = 1. The right
shifts extend the sign bit (ell) to fill evacuated positions to give
the correct representation of the result in 2's complement form.

This family comprises four operations (compare logical, or,
and, and exclusive-or) in four formats (RX, RR, SI, and SS).
The first three formats are treated in lines fo-13. CL, CLR, and CLI
merely set the condition code (f7)j the rest perform the appropriate
logical operation (f8) and set the condition code as shown on line
f13, except that in the 81 format the setting of the condition code
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IS suppressed (£12) by a protection or addressing exception.
The SS format for logical operations (£14-32) operates byte-

by-byte from left to right. As in the LM and STM instructions, a
protection or addressing exception will make the entire result
field and the condition code unreliable (f27-32).

The instructions in this group treat the operands byte-by-
byte, the first three (MVO, PACK, UNPK) in right-to-left order and
the rest left-to-right. The single-byte uses of MAC involved
cannot produce a specification exception; protection or addressing
exceptions make unreliable the entire result field in memory, as
well as the condition code when it is a result.

MVO (move with offset) moves the second field to the first
field, off-setting it one-half byte to the left to leave the rightmost
half-byte of the result field unchanged. Zero fill occurs (g9, 10) when
the source field is exhausted, and conclusion occurs (g6) when the
result field is exhausted.

PACK converts a decimal number in zoned format (one digit
per byte with fX4jbyte as the zone bits, except for the low-order
byte in which fljbyte represents the sign) into packed format (two
digits per byte, namely, fX4jbyte and f»4jbyte, except for the low-
order byte in which f»4jbyte represents the sign). Five operations,
selected by the variable i (line g15), are used in constructing the
packed bytes as follows:

° the sign and digit of the low-order byte are interchanged;
1 the digit is placed in the right half of the byte;
2 the digit is placed in the left half of the byte;
3 a zero digit is placed in the left half of the byte;
4 zero digits are placed in both halves of the byte.

The variable i respeeifies itself (line g16) by the ith component
of (4, 3, 4, 4, 4) if the source field is exhausted, or by (1, 2, 1, -, -) i

if it is not. The process ends (g21) when the result field is com-
pleted.

UNPK (unpack) performs the operation converse to PACK. The
program is analogous but simpler, since i has only four states.

The remaining instructions in this group scan the fields from
left to right. TRT (translate and test) uses successive bytes from
the first field as relative addresses in the second field until the
byte fetched therefrom is nonzero; this byte and the current
address to the first field are then stored in R2 and R1

, respectively
(g43), and the condition code is set. TR (translate) replaces each
byte of the first field by its correspondent selected from the second
field. MVZ (for which I~ = 1) moves only the zone portion (i.e.,
the left half) of each byte; MVN moves the numeric portion.

ED uses the first field both as result and as a pattern to select
successive bytes from the second source field and from a fill byte
specified (h13) by the first byte of the pattern field. Each pattern
byte is classified (h12) as "digit select", "significance start",
"field separator", or "other" (class = 0, 1, 2, or 3); class then
controls the subsequent assembly of the result byte.
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Except for a byte with a sign (i.e., a non-numeric right half),
bytes from the source field are used one half-byte at a time, each
half being prefixed by a standard zone j selected by P12 (lines h2,
17~22). The source byte thus constructed is used (h24-26) only
if the numeric part is nonzero or if the current portion of the field
is already significant (s = 1); otherwise the fill byte is used. The
byte is constructed, and the source field is advanced, only when
the class of the pattern byte is either a "digit select" or a "sig-
nificance start" (hI4). If the class is "other" and s = 1, the pat-
tern byte is left unchanged (hI5); otherwise the fill byte is in-
serted (hI6).

The significance trigger s is set only on line h8. It is set to
zero if j = 0, that is, at the outset (h l) and also if the last byte
used was from the source field and the numeric part was a plus
sign (h9, 2:3). If j = 1, then s is set according to the class of the
preceding pattern byte, s changing from 1 to 0 only in the case
of a "field separator" (class = 2), and from 0 to 1 only in the
case of "significance start" (class = 1) or in the case of "digit
select" if the last byte was chosen from the source field and was
nonzero, as seen from the setting of u on lines hID and h21.

The final setting of the condition code is determined (hd)
by sand i. The latter is set by a nonzero digit (h27) and reset
(h7) by a "field separator." A data exception (t7) occurs if the
left half of a source byte is non-numeric (h20), and terminates (h4)
in the manner of protection and addressing exceptions. Sinee
ED is an optional (decimal) feature, it is aborted (hO) if t, = 1,
and is treated as an "undefined operation" by branching to
line 10. EDMK (edit and mark) differs only in that the byte ad-
dress of the first nonzero digit in the last nonzero field is entered
(h30) in R 1

•

In this group of instructions, the first operand is taken from
one or two general registers, determined by a1 • The second operand
is chosen as Ra, for the RR format instructions, as 2 bytes from
memory at a~ for the half-word instructions, or as 4 bytes from
memory for all others.

The arguments k, and k, are derived from the operands in
two ways: as the base-2 value (i5, 16) in the "logical" group
AL, ALR, SL, SLR, and as the 2's complement value (i4, 10) for all
others.

A specification exception suppresses the instruction (ilO). An
addressing exception makes the result k questionable (ill, 12);
otherwise k is the true result of the appropriate arithmetic opera-
tion on k, and k, (line i17).

The specification of the final result is illustrated by line i19.
The treatment of results outside the representable range has
already been discussed in the section devoted to branch in-
structions. The setting of the condition code and the exception
conditions t, and i 9 is straightforward.

The intermediate result k is obtained (j22) by applying the
appropriate arithmetic operation to the arguments k, and k2 or,
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in the case of ZAP (zero and add) and eVB (convert to binary),
by using the single argument k 2 directly. eVD also involves a single
argument only (j1).

The argument k; is determined (jIg) as the signed base-lO
value of the vector .:;:/jv of decimal digits, v being assembled (j15)
by catenating the base-2 values of half-bytes from field i. The
last half-byte determines the sign (jl!), a negative sign being
represented by 1:~ (that is, 1101) in the extended BCD code
(P'2 = 0), and by 11 in the American Standard code. For example,
if Pi2 = 0, I, 1 and the bytes at M a, and Ma,+l are OlOi 0000
and 1001 1101, respectively, then v = 5,0, 9, I;~, and k, = -509.

The result k: is converted to the decimal representation and
stored (j34-42) and, except for DP (divide decimal), the opera-
tions end on line j43. Because of the setting of j on line j33, the
quotient k is stored only in the first (1, + 1) - (12 + 1) bytes of
the first field, leaving space of length (12 + 1) for the remainder,
which is computed on line j47 and converted and stored by re-
peating from line j35.

CVD produces an S-byte result (j2), and CVD and eVB produce
specification exceptions (j;~9, 3) if the argument address is not
at an 8-byte boundary. For MI' and DP, a specification exception
is occasioned (j9) if the length of the second field exceeds either
8 bytes or the length of the first (i.e., the result) field. All speci-
fication exceptions suppress the instruction; except for CVD, in
which the result field remains unchanged, all other errors make
the relevant result fields unreliable (j4S--55). A data exception t-
occurs in ZAP CiS) if the fields overlap such that the right-hand
end of the second field is to the right of the right-hand end of the
first. Data exceptions caused by improper overlapping in the
other instructions are detected and entered on line jlS,

Two floating-point representations are used; the short (one-
word) and long (two-word) representations utilize logical vectors
u of dimensions 32 and 64, respectively. A number n, represented
by U, is evaluated as follows:

Uo is the sign (0 for +, and 1 for -);
.1.ii' / II/u is the characteristic c;
2-·a' l u X ..Lii8/ u is the fraction i,
c - 64 is the exponent e; and
In is equal to f X 16e

•

The program comprises three major segments, the fetching
of operands u and v (lines kO-16), the computation of the results
(kI7-65), and the storing of results and the setting of the con-
dition code and of (lost) significance (t14) and exponent underflow
(t'3) exceptions (k66-7:).

Floating point register i is selected by the address 2Xi,
and the relevant addresses (both 0, and O2 in the RR format)
are therefore subject to a specification exception check (kI)
which suppresses the instruction. Specification exceptions oc-
casioned by MAC also suppress the instruction (k14).

convert
(lines jD-55

floatlng-point
arithmetic
(lines kO-73)
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undefined
operation codes
(lines 10-5)
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The behavior of the computation phase will be illustrated
by AD (add normalized (long». The argument with the smaller
characteristic is shifted right (k21-23) by four times the difference
in the characteristics, since the characteristic is taken to be the
exponent of 16, and one hexadecimal digit comprises four bits.

The appropriate common characteristic determines j on line
k24. Lines k28-30 show the determination of the arguments k 1

and k2 as the signed values of the fractional parts of u and v,
and the determination of the result k therefrom. The sign of the
result is determined on line k32, and the fraction and possible
fraction overflow i on line k33.

If fraction overflow occurs, line k37 shifts the fractional part
of the result right one hexadecimal digit and prefixes it with
hexadecimal 1 (thus restoring the overflow), and the next line
increases the characteristic accordingly. If exponent overflow
results (k39), the entire vector u is questionable (k40); otherwise,
the characteristic is specified by j on line k48. If fraction overflow
does not occur, the program continues with line k41.

The treatment of a zero result fraction depends on the (lost)
significance mask Pag; if Pag 1, the fraction is combined with
the normal characteristic j (lines k41, 48); if Pag = 0, it is com-
bined with a zero characteristic (i.e., the most negative possible
exponent) and a positive sign (k42, 47).

A nonzero fraction is normalized (k44, 45), the amount of
shift i (in hexadecimal digits) being determined as the integral
part of one-fourth of the number of leading zeros. The charac-
teristic is reduced accordingly; if it becomes negative, the entire
result field is set to zeros (k47) and the exponent underflow excep-
tion (i 13 ) is set conditionally on line k73.

Because the tests for the various exception conditions approp-
riate to a given class of instructions (including the check on the
legitimacy of the operation code) may proceed concurrently,
addressing and specification exceptions may be presented even
for an undefined operation code. The undefined operation excep-
tion i 1 will, of course, be presented (CPU line 10), but in the event
of multiple exceptions anyone of the exceptional conditions may
actually be recognized (CPU line 24).

If the first half of the operation code byte has any of the
values 0, 1, 4, etc., listed on line 10, no spurious exception condi-
tions can occur. Any other codes may (as indicated by the question
marks) set i5 and i6 as shown by lines 14-5. For example, the first
half-byte of the illegitimate code 0011 0101 has the value 3 and
is treated, for error check purposes, the same as the floating-
point instructions occurring inrow 3 of the operation decoding
matrix O. Thus i 5 is set to zero and i 6 may be set to the value
i1 V i5 • In other words, this case may present a specification
exception if either of the effective addresses do not designate a
valid index to a floating-point register. The format used for the
calculation of the effective addresses is determined by -L[g. 1 as
shown by~.
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Input/output

The SYSTEM/360 input/output included in this formal description
comprises five system programs: CHe (channel c), IOIE (I/O
interruption entry), HFC e (hardware failure in channel c), TOLe
(time-out limiter for channel c), and BMT (burst-mode timer).
The description extends as far as the interface between a channel,
which communicates directly with the CPU and the system
memory M, and control units, which are closely associated with
input/output devices.

Channels are of two major types, multiplexor and selector,
and a system has at most one of the former and six of the latter.
Both types are encompassed in the general program CHe

, where
c is the channel number, the number zero being reserved for a
multiplexor channel. In a formal reading of the program, the
value of c is fixed, and the single program CH e represents several
independent programs, one for each channel in the system. The
behavior of a multiplexor channel (c = 0) differs significantly
from that of a selector channel; the differences appear wherever
a statement involves the terms (c = 0) or (c ;t. 0) or involves
a branch based on the variable c. For example, because of the
branch on CH line 46, lines 47 and 48 apply only to the multi-
plexor channel, a point emphasized by the use of the superscript
orather than c.

The programs TOLe and HFC e also represent a multiplicity
of similar, but not necessarily identical, programs for different
values of c. However, operational differences in these programs
depend not upon distinctions between multiplexor and selector
channels, but rather upon model-dependent factors such as the
degree to which a particular channel shares physical facilities
with the CPU. These factors are reflected in the "channel model"
matrix CM.

At this point, Table 3 merits further study for the information
it yields with regard to the logical structure of the input/output
system. It will be found that most of the channel variables are
formally matrices, with the rows indexed by the channel number.
The rows are therefore completely independent in their behavior,
and a column is of interest per se only in the case of pending
interruptions (B s) , as shown in CPU line 25 and IOIE line 1.
Analogously, matrix V possesses one row for each control unit
on the system, and CH line 37 uses columns Vs and V12 •

A channel resembles an independent computer insofar as it
executes a sequence of special fixed-length (8-byte) instructions,
called commands, stored in the system memory M. To this end
it possesses a sequence counter W

24 / CA we, (initially set by an
I/O instruction of the CPU) and a command register C", The
commands themselves are limited, so far as the channel is con-
cerned, to the transfer of information to or from M, known re-
spectively as read and write, and a respecification of the next
command address (w24/ CAwe), or transfer in channel (tic). Special
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cases of read and write are, respectively, sense and control, but
these are distinguished as such only at the control unit or device
level.

The execution of a sequence of commands (of length greater
than one) is called chaining, and is signalled by the flags C~2

and C~3' Data-chaining causes a respecification of the data address
(w24/a32/ C), the flags (C~2, 33,34, 3U6), and the byte count (w16 / C),
but does not disturb the command code (as / CO) and hence merely
continues the operation in progress. Command-chaining, which
takes place only when an operation is completed, causes all of C"to
be replaced and thus may initiate a different kind of operation.
A tic may occur in either type of chaining, but this affects C'
only indirectly. Any chained sequence of commands relates to a
fixed device address, that initially set by the SIO instruction.

Direct communication between the CPU and a channel is
initiated either by the CPU through an I/O instruction, or by the
channel through an I/O interruption. This communication with
the CPU involves the variable B', and in particular the four
central bits, B~,9"o,1l' The suffix (ws/B') and prefix (as/B')
bytes hold, respectively, a device address and device status in-
formation for the indicated device.

B' is formally identified with channel c, as distinguished from
subchannel c, which is formally identified with the variables neces-
sary for sustaining an I/O operation. These are C and CAW',
introduced above, and S", which has a structure similar to that
of B'. The address (wS IS') in this case is the address of the device
currently being serviced, and the byte as/So holds channel status
information associated with this device. The variables Co, CA we,
and S' comprise the only active subchannel associated with a
channel Be; in particular, the interruption-pending and working
states of the channel and of the subchannel are given, respectively,
by B~, B~, S~, and S~'

A multiplexor channel has a number of facilities t', each
of which can store the active sub channel variables and respecify
them when required. It is, therefore, said to have !J. T sub channels,
and it can sustain !J. T simultaneous data transfer operations by
time-sharing its active facilities. At any instant only one device
can be in contact with a multiplexor channel and the operational
information associated with this device will at that time preempt
Co, CA W O

, and SO long enough to transfer a characteristic number
of bytes or to perform an initiation or termination sequence.

A selector channel differs from a multiplexor channel pri-
marily in having no subchannel storage other than Co, CA we,
and So, so that only one data transfer operation can be in progress
at any time, Once an operation with a particular device is initiated
on a selector channel, that device will stay connected at least
until all data called for by the operation have been transferred,
or until the operation is countermanded by an RIO instruction.
There is no interleaving of data transfers from different devices,
but between the termination of a sequence of commands with
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one device and the initiation of a new sequence, the channel will
service requests from devices that have outstanding status in-
formation to transmit.

A selector channel always works in the "burst" mode, and the
characteristic operation of a multiplexor channel is the "multi-
plex" mode. However, a multiplexor channel is said to operate
in the burst mode if a particular device monopolizes its facilities
for more than approximately 100 microseconds. This does not
imply a difference in channel operation, but relates only to the
question of availability, since efficient operation requires that the
CPU be able to distinguish between a current operation that
is likely to keep the channel busy for a relatively long time and
one that will soon be over. In terms of the variables used here,
it is a question of how long B~ remains equal to J.

The interface between a channel and its attached control units
or devices is represented by the variables U' and P". The suffix
(,)9/ UC is a bus that carries a byte of information «,)s/ Be) and a
bit (U;) for odd parity. The prefix oN U" comprises three tag
bits which specify the type of information on the bus. When the
interplay bit U~ = 1, information on the bus is outgoing (from
channel to control units) and the tags are, in order, command-out
service-out, and address-out; when U~ = 0, information is ingoing
and the tags arc status-in, service-in, and address-in. In operation
only one tag may be set at a time, and its significance depends,
in part, on the state of the channel. The remaining elements of U'
are concerned with establishing and holding a logical connection
between the channel and a particular control unit. They are
suppress-out (U~) and operational-out (U~) which are set only
by the channel, and operational-in (U~), which is set only by the
control unit. The polling line P" is a vector that has a position
for each control unit on the interface, in the order in which they
are connected. p~ is called select-out and P';"" where w, has a value
equal to the number of control units connected, is called select-in:'

Control units may be physically separate from or integral
with their associated devices; a multiplicity of similar devices
may be connected to a single control unit or, conversely, a device
may communicate with more than one control unit. Although the
present formal description does not include details of this side
of the interface, it will sometimes be necessary to refer to it in
the text. The term "device" will usually be used when speaking
of specific tasks that devices perform once an active connection
has been established between device and channel, and "control
unit" will usually be used when emphasis is on the establishment
of such a connection.

The formal description shows the generation and processing
of all results of channel operation to which a programmer has
access, including the data transferred to or from memory, a con-
dition code setting (P34,3,,) for I/O operations, an interruption
code setting (P."06J), and a channel status word (CSW) which
comprises CAwe, a device status byte fl/ Be, a channel status
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channel
program

data transfer
(lines 7-31, 59-65)

Channel State
type Ba B9 S'8 S9

mpx ? 1 ? 1
s~ ? 1 0 1
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byte (ljse, and a byte count w 16 j Ce.
In the discussion that follows, major phases of the CH program

will be outlined, certain critical portions will be examined in detail,
and the operation of the four auxiliary programs will be sum-
marized. As before, the discussion is intended as a guide and
introduction only, the complete description of channel operation
being embodied in the programs.

Functional segments of CH are listed in Table 10 in the order
in which they will be considered. The table gives the extent of
each segment, its entry and exit points, and the channel and sub-
channel states that predominate when the segment is active.

It is assumed initially that the channel is actively engaged
in data transfer, i.e., a byte has been transferred either to memory
(line 18) or from memory (line 11). If an invalid address has been
indicated in S; by the use of MAC on line 11, then line 12 branches
to line 7 to place a signal on the interface that will be interpreted
by the device as an order to stop data transmission. If instead
the normal branch to line 13 is taken, a parity failure in the byte
from memory will be recorded as a channel data check (S~) in
the channel status byte, but it will not cause termination of the
operation. In line 14 the data byte is placed on the interface, to-
gether with the (possibly incorrect) parity bit cJg and the service-
out tag U~. The interplay bit U~ is set to 1, indicating that this
is an outgoing transmission. The unconditional branch to line 19
updates the memory address, and line 20 reduces the byte count.
Had the operation been a read (C; = 0) rather than a write
(C; = 1), a parity error on the interface would have been noted
in line 15 and the receipt of the byte acknowledged to the device
on line 16 before the attempt to store the byte on line 18. Following
this MAC, however, read and write are treated identically until
they separate again on line 10 during the next byte cycle.

Certain actions are peculiar to the read operation. First, there
is a conditional setting of U: on line 16 which will be discussed in
connection with data chaining. Second, certain options are avail-
able during read: the skip flag C~5 determines (line 17) whether
the received byte should actually be stored; and if the last four
bits of the command code are 1100, indicating a backward read,
the address will be decreased by one, rather than increased
(line 19).

If data chaining is not indicated by the test on line 21, the
action moves to line 59 to test for a program controlled interruption
(pci). If the need for a pci is indicated by S~, and if no prior inter-
ruption request is pending (B~ = 0), then an interruption request
is initiated on line 60 by setting B~ to 1 and loading into the ap-
propriate parts of Be an all-zero device status byte and the address
of the working device (w8 js e).

It is noteworthy that in a selector channel a prior interruption
pending at this point can only be a pci entered at an earlier time
in the execution of the current sequence of commands, but in a
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multiplexor channel it could be any kind of interruption. However,
if the device for which the interruption is pending in a multi-
plexor channel is the device that is involved in the current se-
quence «(Us/ BO) = (U8/S0), then the interruption is necessarily
a poi.

The foregoing remarks can be confirmed by a study of the
general topology of the ClI program: if c ~ 0 the entry to line
59 from outside the data transfer segment can come only from
lines 69 or 130; moreover, the entry from line 69 occurs only
during command chaining and therefore belongs to the execution
of the current sequence of commands. The entry from line 130,
however, represents the initiation of a new command, and if this
is not part of a sequence of chained commands, its source can be
traced back through lines 94 and 96, which together assure that
B~ will be zero upon entry into a new command sequence in a
selector channel. On the other hand, for a multiplexor channel
entering through line 130, line 96 is skipped and a sequence of
tests and settings in lines 97-100 may allow B~ to remain set.
More broadly, however, for c = 0 the entry to line 59 may have
come from lines 50 or 32, in which case nothing can be said about
B~ except that it retains its previous setting, whatever the source.

Treatment of the pci is followed by a dwell at lines 61 and 62.
A multiplexor channel at this point examines the state of u~

(operational-in) to determine whether the presently connected
device wishes to extend the current burst of information transfer.
If lJ':J = 0, exit is made from line 61 to line 58, storing the state
of the active subehannel, making the channel not busy (B~ f- 0),
and resetting the burst timer control (gz f-O). In a selector channel,
or in a multiplexor channel where the device is maintaining
the connection, line 62 controls the dwell. Here the channel
waits for a response from the interface, indicated by U; = 0;
for an order from the CPU to halt the I/O operation, indicated
by B~o /\ go; or for a signal that the device response time has
been excessive and there may be trouble on the interface, indi-
cated by an interface control check (S~). set, for example, by a
TOL program.

If the escape from line 62 was not for HIO or an interface
control check, and no improprieties were found on line 63, then
the subsequent decision at line 65 depeuds on whether the device
desires data transfer (U~ 1) or has sent in status information
(U~ = 0 and U~ = 1). Data transfer takes the program to line 1
where an incorrect length indication (S~ may be generated, and
then to line 9 where the channel decides to terminate or continue
the operation. Termination at this point-where continued
data transfer has been requested by the device-may be caused
by a zero byte count (regardless of the setting of SD, or by a
previously recognized but unfulfilled HIO, signalled by S~ (possible
only On a multiplexor channel), or by the presence of a nonzero
channel status bit other than S~ (pei) or S: (data check). A pro-
gram or protection check generated by MAC during the previous
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data chaining
(lines 22-31)

Channel State
type B~ B~ S~ S~

both ? 1 0 1
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byte cycle on a read operation first takes. effect at this point.
If termination is not required, data transfer is effected as before,
beginning with the branch from line 10 for read or write.

At different moments in the discourse across the interface
between a channel and a device only certain responses from the
device are valid. Thus, upon escaping from the dwell on line 62
because of a response on the interface, the channel expects either
status-in (U~) or service-in (U~), and a properly operating control
unit will return only one of these tags and no others. Any other
response must be considered an interface error, and is so recorded
on line 63, which also includes a test for parity failure on a status
byte. The action to be taken in case of irueriace control check
and other error conditions will be discussed more fully in the
treatment of HFC, but it may be remarked here that the branch
to the HIO sequence (line 78) is the mildest action appropriate
under the circumstances.

The data transfer cycle has been described here as a strictly
byte-by-byte operation, although in most implementations a
channel will buffer a certain number of bytes in order to use the
central memory more efficiently. While this may have a notice-
able effect on the timing of I/O operations, the only observable
effect of such buffering on the static results is found in the case of
termination due to a program or protection check. In this case
the byte count subsequently stored as part of a channel status
word will not necessarily reflect the actual amount of data trans-
ferred, a state of affairs indicated by the expression ?(16) appear-
ing in lines 136 and 154, and in IOIE, line 24.

The number of bytes specified in a channel command word
will always be transferred to or from contiguous memory locations,
as shown in line II}. When the count becomes zero, however, the
operation may be continued by fetching a new channel command
word with a new count and a new memory address. Such a con-
tinuation is signalled on line 21, which tests for a zero count and
the presence of the chain data flag C~2'

Line 23 fetches the double word indicated by the address in
CA we, and the address is updated on line 24. The four-bit pattern
in the command code detected by line 25 signals a tic (transfer
in channel) which, if present, causes the replacement of the address
in CA we (line 31) and a repetition of the fetch, line 23. If this
produces another tic, a program check is recorded on line 30
because of the prior setting of j on line 31, and the process is
stopped by a branch to line 29. Line 30 also checks for a specifi-
cation or addressing error in the address field of the tic command.
This test, which would normally occur in the succeeding MAC
on line 23, is done explicitly at this point in order to preserve
the address of a faulty tic for diagnostic purposes, since the tic
address would not be recoverable after the execution of line :n.

If the command code field of the double word fetched on line 2:3
does not specify a tic, its overall format is checked on line 26,
and if satisfactory it is used to respecify all but the command
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code in Co (line 27). The pci bit is set if called for by C;6' and
channel overrun (S;) is recorded if a read operation is in progress
and the device has already signalled on the interface.

The setting of U~ on line 1G is a signal that data chaining is
about to take place during a read operation. Certain devices can
respond to this signal by delaying the transmission of the next
byte until U~ becomes zero (line 29), thus avoiding the possibility
of channel overrun. Otherwise, overrun is a function of the relative
speeds of device, channel, and memory, as well as of the current
memory activity.

A channel cannot break out of the data transfer phase on its
own initiative unless it recognizes an interface control check
(line (3). In normal operation it must wait for a stop order (RIo)
from the CPU or a status byte from the device, even though it
may have initiated the termination by issuing the command-out
tag on line 7. A multiplexor channel will leave from line 61 any
time during data transfer if the connected device sets U~ = 0,
but this is not a termination of the operation; the channel will
return to line ;)9 and continue in the data transfer phase the next
time the device requests service and is reconnected.

The first action in a normal termination (line Go) is a setting
of the incorrect length indication for a long count (i.e. when term-
ination occurs with a non-zero count). A prior setting, possibly in-
curred on line 8 for a short count, will be preserved. In both
cases the setting depends on the state of the control flags in CC,
if data chaining is indicated (C~2 = 1), the wrong length indication
cannot be suppressed by C~4' However, if a program, specification,
or channel-overrun check has occurred, the indication of wrong
length may fail to appear (as shown by the conjunction with
? V ""' V /S~.3.7)'

If the possibility of command chaining is ruled out on line 67,
termination of device operation proceeds with the setting of the
subehannel state S~.9 to "interruption pending" and "not working"
on line 71. The interruption condition must now be entered in
the channel, if possible, and to this end it is necessary to ensure
that a previously pending interruption is not at this instant being
serviced by the CPU through IDlE. Line 72 is an interlock for
this purpose.

The test on line 7:3 is vacuous for a selector channel, which
always proceeds through the next two lines, setting up the channel
interruption and branching to line ;)7 and then to line ;)6, where
it waits for service from the CPU. A multiplexor channel, however,
may be unable to accept the status byte and consequent inter-
ruption at this time. If so, it skips lines 74 and 7T> and, because of
the setting of ,j, returns command-out rather than service-out
on the interface (line 70). The former is interpreted by the device
as an order to stack (i.e., save) the information just transmitted;
the latter, as permission to clear (i.e., destroy) the status and go
about other business which may, in fact, be the completion of a
phase of tho current operation that does not require channel
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facilities. In either case, the multiplexor places the device address
in the field of the no-longer-needed data address (line 77), returns
to line 59, passes through line 61 as soon as the device disconnects
(ug = 0), stores the subchannel information and makes the
channel not-busy (line 58), and goes into the idle phase (lines
35-55).

It will be observed that a selector channel will not have
signalled on the interface at this time, thus keeping the device con-
nected. The channel itself is not available for anything but a clear-
ance of the interruption just set. This can be seen by tracing IOIE
and the I/O instructions of the CPU with B~, B;, s~, S; set to
1, 0, 1, 0, respectively. A TIO addressed to the proper device,
or an interruption service, will cause program CH to follow the
path ... , 56, 82, 83, 87, 88, 89, 92, 153, 154, 155, 160, ... ,
which clears the interruption condition and releases the device,
and then goes on to make the channel available for new work.
A TIO for another device, or an SIO, is rejected by the sequence' .. ,
56, 82, 83, 87, 88, 89, 92, 93, 138, 134, 135, 32, 33, 56, ... , and
leaves the channel state unchanged.

Termination due to the instruction RIO is indicated when the
CPU tries to contact a channel through B;o when the channel
is busy (EXC c6--9). This is sensed in line 62 and causes a branch
from line 64 to line 78, where a signal to the device to disconnect
is transmitted on the interface (U; = 1 when P" is all zeros).
The possibility of command chaining is then erased and the CPU
is released (line 79). A multiplexor channel will then return to
line 35 through line 59, as described for normal termination, and
contact with the device will eventually be reestablished when
the device has come to a stopping point and generated a status
byte and a request for service. To the multiplexor channel this
request will be indistinguishable from a service request for ad-
ditional data transfer or normal termination. In contrast, a selector
channel at line 80 proceeds very much as if termination had been
signalled by the device, combining the operations of lines 66,
71 and 74 in line 81, and returning to lines 57 and 56. The signifi-
cant difference is the specification of zeros as the device status
byte (fl/ BC

) .

There is a two-level hierarchy for device status bytes: those
associated with a termination (evidenced by the state of S~) have
an irrevocable hold on the channel interrupt signal (B~) until
cleared; others, externally generated or arising after the device
is disconnected from the channel, may be displaced, without being
accepted by the CPU, to allow a new operation to start (in which
case the information must be saved by the device). Non-dis-
placeable status bytes are usually characterized by the presence
of channel end «cl / B C

) 4), but exceptions occur when a sequence
is terminated during command chaining and when, as just noted,
RIO is issued to a busy selector channel. In the first case chan-
nel end may never appear; in the second case, the channel-end
byte, when it is received, will have the same significance for
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channel operation as any other status byte submitted after
termination.

Each device status byte implies the formation of a channel
status word (CSW), either by means of an interruption, a TIO,

or an SIO. The execution of RIO by a busy selector channel will,
therefore, cause an extra CSW to be generated, for a possible
total of four associated with the subject command sequence. The
three nonzero device status bytes which are always possible
would contain, respectively, bits designating channel end, control
unit end, and device end, together with whatever other conditions
happened to be present. Any two, or all three, end conditions may
appear in the same byte, but in any case an operation is not
actually completed until device end for it has been submitted and
cleared at the device. Control unit end is supplied only under
special circumstances but, apart from the exceptions possible dur-
ing command chaining, channel end and device end are made
available at the termination of every sequence, and will appear
in a CSW.

Command chaining (the execution of a sequence of operations
by the same device) is initiated (line 68) if the tests in line 67
are satisfied: the flag settings C~2.33 must be 01, no bit other
than poi (S~) may be present in the channel status byte, and the
device status byte on U" must conform to one of the allowed
patterns listed. (In the absence of hardware failures it is possible,
coming from line 66, for any but the busy bit «(,)8/ U"h to be pres-
ent in addition to channel end «(,)8/ U C )4') The inception of com-
mand chaining is signalled to the device on line 68 using the
same signal as was used to signify data chaining (line 16), but
this time it is in response to status-in rather than service-in. In
response to this signal the device will clear the status, but the
channel must note the presence of device-end to decide the branch
on line 69. If device end is present (j = I), initiation of the next
command takes place immediately, starting with line 70, where
the address in CAW" of the next command word is increased
one double word if the status modifier bit «(,)8

/ UC) 1 had been sent
with device end. The program then branches to line 104 where
it joins the SIO sequence described below under "CPU service".
If device end has not been received, line 69 causes a branch to
line 59, after which a selector channel dwells at lines 61 and 62,
and a multiplexor channel exits at line 61 when the device dis-
connects by setting U~ to zero.

When a device disconnects from a channel (for anyone of a
variety of reasons on a multiplexor channel, but only following
the acceptance of a terminating device status byte on a selector
channel), the channel is free to respond to calls from the CPU
or to service requests from its devices. Line 37 shows a dwell
on the two possibilities, and line 38 shows that requests from
devices take precedence over CPU requests. The expression
V / V8 1\ V1 2 = c corresponds to request-in, and rests upon the
following formulations. Each control unit on a system is asso-
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eiated with a row of a matrix V. Control unit u, desiring service
for one of its attached devices, sets V~ = 1 and at the same time
indicates the channel wanted by holding the channel number in
V;2' If V~ = 1 and V;z = C, this clearly represents a call for
channel c, and all such possibilities are monitored by the or
over the conjunction. The numbers available to control unit u
for V;2 must, of course, be restricted to those of the channels
on whose interfaces the control unit is indeed connected."

In response to request-in the channel attempts to establish
a working connection with a device by setting select-out (P~)

to 1 with the tags «3/ UC set to zeros (line 39). Control units are
connected serially on the interface with respect to select-out.
Only the first control unit will Sense P~, and it will pass the signal
on (setting P~ = 1 and PZ = 0) if it does not require service.
Successive control units will pass the signal on in a similar way
until either a control unit responds with address-in or the last
control unit, passing the signal on in turn, sets select-in (P':uJ
to 1. A tag other than address-in, or wrong parity on an incoming
address, will cause an interface control check (line 41).

For a multiplexor channel, two major types of request for
service from a device are possible:

1. from a device still in the data transfer state (S~ was 1 last
time it disconnected at line Gl);

2. a) from a device for which a termination status byte was
stacked,

b) from a device for which device end is due, or
c) from a device presenting an externally generated signal such

as attention or a change from not-ready to ready (which
will be indicated as device-end).

For a selector channel, only types 2b and 2c are possible.

A multiplexor channel always honors requests of the first type,
but attempts to suppress others if the interruption buffer (as/ BO
and ('/! BO) is loaded, as indicated by B~ = 1. This is shown in
lines 36 and 39 where suppress-out (U~) is set to the value of B~.

When U~ = 1, a control unit must either suppress requests of
the second kind by not activating V~ and ~2 or else pass along
select-out when the channel tries to establish a connection under
these circumstances. On a selector channel, B~ is zero during the
idle phase and all requests are, therefore, honored.

If a connection is established (U~ becomes 0 and U; becomes 1,
lines 40, 42), a multiplexor channel will immediately set select-
out to zero (line 44), giving the device control over the con-
nection. Operational-in (U~) will have become 1 with U~, and
now the channel (always passing through lines 59 and 61 before
returning to idle) will be constrained to hold the connection as
long as U~ = 1.

Line 44 has no effect on a selector channel, which simply con-
tinues by placing the device address in the working address
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register lJ/IS" (line 45), acknowledging its receipt with command-
out (line 49), waiting for the next response (line 51), which this
time must be status-in (line 52), and loading both status byte
and address into the channel registers as an interruption request
(line 53). It then dwells at line 56 waiting for a call from the CPU.

A multiplexor channel has a slightly more complex sequence
after line 45. It first uses the device address just received to gene-
rate an index to the subehannel storage facilities (line 47). All
eight bits of the address are used to generate this index if the
zeroth bit is a zero. If not, only bits one, two, and three are used,
thus allowing several devices to share a sub-channel, i.e., a storage
location in T. The stored operational information is then loaded
into the active subchannel facilities, the channel is put into the
working state by setting B~ to 1, and BMT (burst mode timer) is
released from its dwell by setting g2'The device is signalled to pro-
ceed (line 49), and the state of S~ is sensed (line 50) to determine
which phase of operation the device is in.

If S~ = 0, the device is requesting service of the second kind
and the program proceeds much as in the case of a selector channel.
An additional malfunction is recognized in this case if the control
unit overlooks suppress-out and accepts service when B~ = 1
(line 52). If no malfunction is recognized, an interruption request
is entered on line 53 and receipt of the status is acknowledged
on line 55. The earlier remarks concerning line 76 are relevant
here, since the device may still be required to stack the information
in spite of the fact that the interruption facilities are now available.
The criterion this time is whether the byte just received is termina-
tion status stacked at the time of generation. The state of S~

determines this, and so is used to choose between command-out
(ug) and service-out (U';), allowing the device to clear the status
if S~ = 1. As noted before, the need to stack arises because non-
termination status information can be displaced from B" without
entry into a CSW. Finally, the branch to line 59 returns the
channel to idle status through lines 61 and 58.

If S~ = 1 in line 50, there is an immediate branch to line 59,
and the dwell at lines 61 and 62 would await a response on the
interface, just as if the device had never disconnected from the
channel. The device may be at any stage in its operation and it is
possible that it will transmit status information rather than data
at this time. This would, of course, lead into the termination se-
quence, as previously outlined. If data remains to be transferred,
the device will transmit or accept its characteristic number of
bytes and then set U~ to zero, allowing the channel to return to idle.

Certain channel models, when idling, continuously scan their
interfaces for service requests rather than waiting for request-
in to rise. This difference is shown by the branch at line 35. The
continuous-scan type follows the loop ... , 39, 40, 41, 42, 43,
35, 39, ... , skipping the dwell at line 37 and responding (line 43)
to the CPU interlock B~o after each non-response from the inter-
face (U~ = 0, line 42). The other type, largely described above,
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would mainly dwell at line 37, and normally proceeds through· .. ,
38, 39, 40, 41, 42, 44, ... for a device request, or leaves at line
38 for a CPU request. For certain control units, however, a non-
response even after request-in has risen is a normal possibility, so
the loop via line 43 may be followed. Interface control checks
arising in this phase of channel operation have again been shown
in their weakest form, simply causing a return to line 35, repetition
of interface scan, and testing of B~o'

The channel responds to the CPU in executing the SIO, TIO or
RIO instructions and in processing interruptions. Provision is
made in IDlE for servicing certain interruptions, but otherwise
interruption processing is very like TIO. Although the initiation of
a new command by command chaining is not strictly part of
CPU service, it is almost identical with SIO and they will be
treated together, where appropriate.

Except for command chaining, it is assumed in what follows
that B~o has been set to 1 in EXC line c13 or IDlE line 8, and has
caused CHe to branch to line 82 from line 38,43, or 56.

The first phase of CPU service starts by setting a working
device address either from the effective address a, supplied by
the CPU or from the interruption register (,)81 Be (line 82). A
selector channel passes over tests in lines 83, 87 and 88 (and line
89 if not RIO), and continues to line 92. The branch to line 153
is taken for interruption service (go = 1) or for TIO with termina-
tion status (s~ = 1) available for the addressed device. (Note
that if go = 1, then (,)81Sewould have been set by (,)81 B' on line 82.
The requirement that this be termination status is not imposed
on interruption service, because the desideratum here is the
availability of status information at the channel level, a condition
that is always satisified when B~ = 1 in a selector channel.)
Failing the branch to line 153, line 93 merely checks, for c ,e 0,
the state of the subchannel, and if it is holding termination status,
the branch to line 138 will be taken. Otherwise, information is not
available at the channel level and the path through line 94 is
followed, leading ultimately to the selection of a device on the
interface.

A multiplexor channel leaving line 82 must first determine the
index to its subchannel storage (line 84), and an invalid index
causes a branch to line 140. Otherwise, the active subchannel
facilities are loaded and a series of inquiries are undertaken to
determine, as in the selector channel, whether the necessary in-
formation is available at the channel level.

For interruption service a totally inactive subchannel (line 87)
implies that it is necessary to go to the interface, but S~ = 1
or sg = 1 imply, respectively, that termination status or a pci
is available at the channel level, and the branch from line 88 to
line 136 is followed. For TIO to follow the same path requires,
as in a selector channel, that the channel be holding termination
status for the addressed device. In this case S~ = 1 alone does
not distinguish the termination state, since the case S~ = 1
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and s~ 1 is used to denote a pending order to stop, set on line
145 or 148 by a previously issued HIO, to be honored (line 2) the
next time the device requests service. If U)8/S0 and (,)8/ BO do not
agree, it is still possible for a termination status condition to be
cleared, but only by going to the interface and selecting the
device. This situation is treated on line 93, which is reached by a
multiplexor channel if the sequence to line 89 is followed and the
case is not HIO. For both SIO and TIO at line 93, a multiplexor will
proceed to line 94 if the subchannel is both not working and not
holding an interruption. For TIO the additional possibility of
clearing an interruption is signalled by the same criteria as in
line 88, except that (,)8/S0 must now match the address previously
stored in the address field of C" in line 77.

If there is an HIO at line 89 and the subchannel has an inter-
ruption pending (line 90), no action is taken in either type of
channel, and the branch to line 161 sets the condition code. If
no interruption is pending, the possibility of command chaining
(in a multiplexor channel) is cancelled (line 91) and a branch to
the interface selection sequence (line 115) occurs. Ultimately, an
order to stop will be issued on the interface (line 151) or, for a
multiplexor, the subchannel will be set (line 145) to stop the
operation the next time the device requests service.

Lines 94-100 cancel interruption conditions arising from non-
termination status, as discussed in regard to termination. A
selector channel must order the device to stack the information
at this point (line 96), but a multiplexor channel does not, since
it accepted non-termination status only provisionally in the first
instance (line 55). Line 100 indicates that under some (indeter-
minate) circumstances, a multiplexor channel may not cancel a
non-termination interruption condition.

At line 101, SIO and TIO are the only possible cases. TIO causes
a branch to line 115, but SIO proceeds through lines 102 and 103,
to join command chaining at line 104. A channel address word is
fetched in line 102 from a fixed location in main storage. It is
checked for protection key and format (line 103) and any non-
conformity is recorded as a program check (S;) in the channel
status byte. In line 104, the local variable i, set to zero for com-
mand chaining (B~ 1), will be used as in data chaining to
prevent two successive tic's. Setting j to 1 for SIO, (when B~ 0),
precludes the possibility of a tic as the first or only command
of a sequence. The pci bit is set, if necessary, on line 114.

Lines 105-114 correspond closely to the data chaining segment,
lines 23-31. The differences are largely in error indications, in-
cluding an added aspect of the format check (compare lines 26
and 109), but the most significant difference occurs in line 113
(as compared to line 27) where know respecifies all of C" including
the command code portion.

All program checks, including a faulty CA we, cause a branch
to line 112, which is entered only if there is a program check.
From there, command chaining will cause a branch to line 115,

start I/O
(lines 102-114)

Channel State
type Be Be S8 S~8 9

rnpx ? 0 0 0
sel 0 0 0 0

command
chaining
(lines 104-114)
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type Be Be S8 Sg8 9

both ? 1 0 1
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whereas SIO mayor may not, depending upon the channel model
and immediate circumstances. The alternative for SIO is the
branch to line 139 which stores the status byte portion of the CSW.

At line 115, the possible cases are command chaining, SIO,

no, or RIO for any type of channel, and interruption service for
a multiplexor channel. Selection is started by setting select-
out, as in line 39, but the working address is now on the interface
bus «(.N U') and address-out (U;) is set. The dwell on line 116
differs from line 40 in the added term S~, which will be set by the
TOL (time-out limiter) program (line 0) if the response from the
device is delayed beyond a maximum interval specified for the
particular channel model. The interface control check S~ may
also be set (line 117) if this is an interruption service (go = 1)
or command chaining (B~ = 1) and no control unit acknowledges
the address or address-in does not rise in response; if any com-
bination of incoming tags appears other than U~ or U; alone;
if there is a parity error on the incoming interface; or if an address
received in response docs not match the address sent out.

For command chaining, the minimal response to an interface
control check at this point is the branch from line 118 to the dis-
connect sequence starting at line 78, just as for an interface control
check in the data transfer phase on line 63. The corresponding
response for CPU service is the branch to line 143 and storage
of a complete CSW for interruption service or TIO (142), or of
the status portion only for 810 or RIO (144). Line 142 also may
be entered by the sequence' .. ,85, 140, 141, 142, ... in the case
of an invalid subchannel index during interruption service.

The branch to line 119 for S~ = °implies that all subsequent
tests are for normal possibilities. Thus, if P':.t" = 1 in line 119
or U~ = 1 in line 120, it must be that SIO, no, or RIO are under
consideration, for only in these cases is a "not-operational" re-
sponse or a "control-unit-busy" response possible without error.
The consequent action in each case is shown by the respective
branches to lines 145 and 147.

At line 145, which is also entered by the sequence ... , 85,
140, 145, ... , JIIO on a multiplexor channel sets the subchannel
to terminate as soon as it requests service, and in line 146 the
condition code is set to indicate "not-operational" in response
to whichever of HIO, SIO or TIO may be current.

At line 147, which is entered only in the case of a control-unit-
busy response, there is a division (like that on line 143) between
interruption service and TIO on one hand, and SIO and RIO on the
other. For the former, the entire CSW is again specified (line 150),
although useful information will appear only in the status portion,
which is the only part stored (line 149) by tbe SIO and HIO. For a
multiplexor channel HIO again sets the subchannel to terminate
(line 148). The device status byte stored at this point contains
the busy bit and status modifier only (,,1.3). In the case of SIO,

the channel status byte is zero, except for a possible program
check (S;).
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In line 121 a multiplexor channel sets P" to zero. If HIO has
lasted to this point, it implies that the device is able to accept
the order to disconnect, and line 122 branches to line 151 to issue
this order. The terms B~ and go in line 122 ensure that this is
truly HIO and not a fortuitous value of r during command chaining
or interruption service.

The command byte is specified in line 123 in preparation for
its transmission to the device in line 124. The last terms of line
123 ensure that, regardless of the command code in C", a pro-
gramming error (S; = 1) carried over from line 112 will cause an
all-zero byte (the interface command code for TIO or interruption
service) to be transmitted. The only legitimate response to a
command code is a status byte with correct parity (line 126)
and, when this response arrives (within the allowed time-out
limit), the program branches (line 127) to line 153 for CPU service.

At line 153 the possibility of an interruption pending in the
subchannel is checked. This could arise either because line 153
was entered directly from line 92 by a selector channel, as noted
earlier, or because the special condition for a multiplexor channel
in line 92 had been satisfied. In both cases a TIO must be in prog-
ress and a full CSW is stored in line 154. For a selector channel
the interruption pending in the subchannel must have also been
pending in the channel, and so both are cleared in line 155. For a
multiplexor channel, however, the subchannel interruption could
not have been in the channel, or the branch from line 88 to line 136
would have been taken before reaching line 93, so in this case
(c = 0) the state of B~ is left untouched. Line 155 is followed by
line 160, which releases the device. The need for an interface
signal is obvious for a multiplexor channel because the status has
just been transmitted; and, for the selector channel, it will be
recalled that the interruption was entered in line 74 and simply
held by the channel with no return signal to the device at that time.

The sequence just described, and the sequence ... 88, 136,
137, ... both relate to the formation of a CSW with termination
status. The latter sequence, which obtains only in a multiplexor
channel, may also be followed for a pci while the subchannel is
still working. In this case the combination S~ = S~ = 1 would,
as usual, be the result of a prior HIO, and it would be improper
to reset S~ in line 137. But B~ is unconditionally reset, providing
a double contrast with the action in line 155. In both line 136 and
line 154 the count field of the CSW is indeterminate if there has
been a program or protection check, and in line 136 this is also
true for a pci.

If S~ = 0 in line 153, further possibilities are checked in line
156. If this is not interruption service (go = 0), and there has
been no programming error (S; = 0), and either the status byte
on the interface «,/1 U e

) is all zero or this is SIO with command
chaining indicated, and the status byte conforms to one of three
allowable patterns, then the branch is taken to line 161. Otherwise
the case is either interruption service to clear a non-termina-
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Table 11 Device status bytes stored in CSW

device status bits channel activity and CH
line on which stored

control
atten- status unit channel device unit unit inter-
tion modifier end busy end end check exception ruption TID SIO RIO

0 0 t 0 1 0 ? ? 136 136t ? ? 0 ? 1 ? ? 154 158
154

0 0 1 0 0 0 ? ? 158 159
0 ? 0 0 0 0 ? ? lOlE 17 ><
1 0 0 1 0 0 ? ? ><
1 0 0 0 0 0 ? ? 15\:! 158

159
0 0 0 1 0 0 0 0 X0 1 0 1 0 0 0 0 149 150 149

tion status from a device, SIO or TIO to a device that is working
or holding status information, or a rejected 810. The status bytes
subsequently stored in line 158 or line 159 will indicate the
situation: no device status at this point should contain channel
end; a busy device will return the busy bit to SIO or TIO; a device
holding status information will include the busy bit in response
to SIO but not TIO (in both cases the device will be cleared, as in
interruption service); and the status for a rejected 810 will contain
a unit check or unit exception.

All possible configurations of device status bytes that may
appear in a CSW are shown in Table 11. As usual, the symbol? de-
notes the possibility of a zero or one in that position; the first line,
for example, represents 8 possible status bytes. Altogether, 94
possibilities are represented.

At line 161 an RIO from line 90 may be present as well as 810

or TIO from line 156. In all cases a condition code of zero is specified.
RIO leaves immediately at line 162, TIO leaves at line 164 after
signalling on the interface. If this is SIO, a command has been suc-
cessfully initiated and the channel and subchannel state variables
are set in line 165 to reflect this. For a multiplexor channel the
timer is started. If the status byte is all zero (line 129), service-out
is signalled on the interface (line 130) and the data transfer phase
is entered at line 59. A non-zero status byte for SIO at line 129
indicates an immediate command, usually a control operation
that can be executed without help from the channel. It also means
that command chaining was indicated by the bits in CC. Both
of these factors were checked in line 156, which strongly resembles
line 67, and the branch from line 129 therefore goes to line 68
to prepare for command chaining.

If command chaining had been in progress at line 127, the
branch to line 128 would have been followed. Here, either a non-
zero status byte or a program check will cause a branch to line 67
where the choice is made between termination and further com-
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mand chaining. Alternatively, the branch from line 128 to 130
leads to the data transfer phase, as in BIO.

A program check during command chaining may produce one
of the odd situations alluded to in the section on termination.
The device involved in the sequence of commands is available
to the channel at this point and it will ordinarily respond to TIO

(the command actually issued-see line 123) with zero status.
But S; will be detected on line 67 and the termination sequence
starting at line 71 will be entered. The termination status byte
may now be zero, and both channel end and device end will have
been lost.

All exits in the segment 137-164 go to line 131 if a CSW has
been stored, otherwise to line 134. At line 131 the channel status
byte is cleared, and except in interruption service, the condition
code is set to (0, 1) in line 133 to signify that CSW information is
available. Except for interruption service, then, all entries to line
134 occur immediately after a setting of the condition code. Line
135 is an interlock with IOIE, followed by a return to line 32.
As usual, a multiplexor channel returns to idle through line 59,
whereas a selector channel either returns to the dwell at line 56
or sets P" to zero and goes on to idle.

A channel that is not operational is shown as dwelling at
line 1. If it is on a system, it can be moved from this dwell only
by system reset or some other external agency. A forced branch
to line 2 (by RESET line 4) clears the various channel and sub-
channel facilities and places on the interface a system reset signal
(U~.5 = 0, 0) which is recognized as such by all control units at-
tached to ths channel." A multiplexor channel also resets the state
bits and status bytes in subchannel storage (line 4).

The channel selected for initial program loading recognizes
its number in the load unit switch (line 5) and sets its working
registers with the canonical information specified in line 6. It
then branches to the selection sequence starting at line 115, from
which point on it cannot be distinguished from any other SIO.

If the loading fails for any reason, a new attempt must be mounted
at the control panel, causing another system reset and returning
the channel to line 2.

The dwell at lines 1 and 2 of IOIE responds to the CPU pro-
gram. When the dwell is broken, the interruption retraction bit
gl is set to 0 and the unmasked channel of highest priority with an
interruption pending is selected for service (line 4). B~o is set to
1 on line 8 if the channel is not working, with consequences that
have been explored above. If the channel is working it will not be
able to respond to B~o directly. This bit can therefore be used as
an interlock, and is set on line 11 for this purpose (see CH line 72).

A selector channel, or a busy multiplexor channel with working
and interruption addresses that match, could only be holding a
pci at this point. This is cleared in line 14 following the formation
of a CSW in line 13. The return to line 0 then sets B~ to zero,
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loads the condition code in p, and signals the CPU by setting
go to zero.

A busy multiplexor channel with non-matching addresses must
check the subchannel storage location indicated by the inter-
ruption address and, if the interruption is for a pci or termination
(line 15), generate a CSW and clear the subchannel (lines 18 and
19) much like CH lines 136 and] :37. If the subchannel test (line 16)
results in the branch to line 17, the bit 9 I is set to 1 and the program
returns to line 0 as in the other cases. However, the CPU will
recognize g1 (line 30) as an indication that information for the
proffered interruption was not available and it will not execute
the usual interruption procedure.

BMT is a time-limiting clock with two ways of stopping. It
is started by setting g2 in CHo, line 48 or 165, and it runs until
stopped by B~ = 0 (line 5) or by its counter running out (line 4).

Where performance requirements permit, channels make use
of CPU facilities and controls to varying degrees. The effect of
this on the logical behavior of the channels is confined to the
recognition of hardware failures and consequent corrective action.
Program TOL" is relevant where CPU controls are preempted for
channel interface operations, so that an independent means for
preventing indefinite delays is required. Two such levels are dis-
tinguished in TOL". If CM~ = 1, channel c uses CPU controls
for all interface operations other than polling in the channel
idle phase, and if CM; = 1, it uses these controls for polling as
well. Thus if CM~ = 1, the dwell on line 1 is broken each time
U; = 1 and either CM; = 1 or one of the interface tag lines is
nonzero. (The polling during channel idle is distinguished from all
other interface operations by U; = 1 and (V /(l/ UC

) = 0.)
In TOL" there are two time-limiting clocks in series. The first

clock, which is started in line 2, times either the establishment of
a connection (U~ = 1), or the return of select-in (P~, = 1), or
any response at all (U; = 0). The maximum time for the dwell
encompassing lines 3-5 is of the order of 32 microseconds. When a
connection is established (U~ = 1) (possibly, in the case of data
transfer, even before the first clock is started), the maximum
time is of the order of 500 milliseconds. This clock is stopped either
by U~ = 0, indicating a response of some kind from the device,
or by U~ = 0, indicating that the device wishes to disconnect.
If either clock runs out before it is stopped, an interface control
check is set in line 0 and detected in ClIc in one of lines 63, 117,
or 126, or in HFC line 1.

Program HFCc distinguishes between the case where the chan-
nel shares both data paths and controls with the CPU (CM~ 1)
on the one hand, and all other degrees of sharing and independence
on the other, Thus, in line], the dwell is broken in all cases for a
channel control checlc10

(S~), but is not disturbed for either a chan-
nel data check (S:) or interface control check (S~) unless CM~ = 1.
Whereas an interface control check will be acted upon by pro-
gram CR c in any case, a channel data check will not, and hence

A. D. FALKOFF, K. ~J. IVERSON, AND E. H. SUSSENGUTH



it has no effect on a current operation unless CPU hardware
is involved. If the dwell is broken and CM~ = 1 (line 2) the branch
to line 3 is taken, stopping CHc abruptly by a forced branch to
its line O. A machine check is then entered (line 4), which will
be recognized by program MCIE. The subsequent branch to
line 0 invokes the defined operation MALFUNCTION RESET
(not detailed in this description) which will carry out the (model-
dependent) recovery procedure called for by the prevalent circum-
stances, taking into account the fact that MCIE has been alerted
by i. = 1. Whatever else it does, line 0 must ultimately cause
CH c to leave the dwell on line 1 with se reset to zero.

Channels that do not use CPU hardware for data transfer
disregard s~ and, if they leave line 1, branch to line 5, where a
malfunction reset signal (U~.5 = 1, 0) may be issued on the
interface.11

If the channel is not working directly with the CPU at this
moment (line 6), the program returns to line O. Otherwise, CH c

is immobilized (line 7) and HFC generates a CSW (line 8) in
which any field may be set to zero if there happens to be a parity
error in the associated register. After storing either all or part
of the CSW (lines 10 or 11) the model-dependent reset is executed
on line 1 before returning to the normal dwell.

Appendix
This appendix furnishes a number of examples to illustrate the
use of the programs and Tables 3 and 5 for reference in answering
specific questions concerning the operation of SYSTEM/360.

What events can cause the CPU to enter the stopped state;
in particular, can the stopped state be entered with any inter-
ruptions pending? Table 3 shows that operating state can be set
by CPU line 34 (to "stop" if the console rate switch is not at "proc-
ess"), by CP lines 12 and 15 (of which line 12 sets it to "stop" when
the stop key is depressed), by MAC line 6 (if the current address
to memory agrees with the setting of the address switch and other
conditions (line 5) are met), by IPL line 10 (during initial program
load), and by RESET line 1. The stopped state (CPU line 35) is
actually entered only by a branch from line 25 or by a forced branch
(RESET line 2). In the former case the branch is taken only after
all pending interruptions are exhausted, while in the latter case all
pending interruptions are cancelled by the reset of h on RESET
line O.

Can any of the effective addresses constructed in the instruc-
tion fetch phase be captured and stored? A scan of the EXC
program (limited to the references to 0 1 and O2 indicated in Table 3)
shows that LA places the second effective address (prefixed by
zeros) in a general register. LA also provides a convenient means
of setting any register ](I' to zero.

By what instructions can the system mask (/1P be set? Table 3
shows that all of P is set on EXC line a26 (that is, by LPSW) and
that (liP is set on EXC line a2 (that is, by SSM). Since both
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instructions are suppressed by t2 (lines al and a25), both are
privileged and could, in a normal operating system, be executed
only in the supervisor program.

What instructions are included in the floating-point feature?
Table 3 shows that the feature options are specified by the machine
characteristics vector m, and that m2 identifies the floating-point
option. The occurrences of m2 in column No of Table 5 therefore
identify the floating-point instructions.

Can data be transferred directly (i.e., not via memory) be-
tween a general register e: and a floating-point register F i?
Comparing the "Results" column of Table 5 with column No
shows that F is set only by floating-point instructions and R
is never set by floating-point instructions. Since R is set only
by non-floating-point instructions and since Table 3 shows that
F is referred to only in floating-point instructions (segment k
of EXC) , direct transfer from F to R is impossible. Similarly,
since F is set only by segment k of EXC, it remains only to scan
the argument fetch portion (kO-16) to see that R does not occur.

Under what circumstances does the interval timer fail to
record elapsed time? The entry for timer alarm in Table 3 refers
to the TU program whose dwell on line 0 contains the conditions
of interest. In particular, the last term prevents normal deeremen-
tation during the dwell on line a17 of the read direct instruction.
Moreover, normal decrementation is delayed by the use of MAC8

on TU line 1 if the channels (which have a higher priority) keep
the memory-access facility occupied.

Can the console operator display the contents of the interval
timer and tell if it is decreasing appropriately by watching the
display lights flicker? Line 18 of the CP program shows that any
memory location (in this case 80) selected by the address switch
can be displayed. However, this segment of the program (15-25)
can, because of line 13, be reached only if the CPU is first stopped.
Any displayed value is therefore fixed. In particular, the timer is
not updated when the CPU is stopped (TU line 0).

How are program interruptions caused by shift instructions;
what determines the amount of shift? Line e1 sets t« (which the
footnote to Table 5 shows to be the "specification exception")
for an odd first address in instructions SLDA, SRDA, SLDL, and SRDL.
Line e9 sets t« (fixed point overflow) for instructions SLA and
SLDA if the mask P36 is on and a significant (differing from the
sign) bit has been lost in the shift. The shifting is performed on
lines e5, e6, e8 and el0, and the amount of shift is determined
on line e3 as the residue modulo 64 of the second effective address.

What instructions employ three specifiable addresses? Table 3
refers to EXC b18, 19, d17, 23 for effective address a3 ; the in-
structions involved are therefore BXH, BXLE, LM, and STM.
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7. To provide complete freedom in the attachment of devices in SYSTEM/360,

the hardware for the interface has been standardized with respect to both
electrical characteristics and logical behavior. The correspondence between
this hardware and the representation used here is as follows. The hard-
ware has a separate bus and separate tags for each direction of data flow,
and therefore has no need for U~. There is an exact correspondence
between physical control lines and each of U~,5,6' and P«. The hardware
has, in addition, two lines not represented by U» or Ps. A line called
"hold-out" is not needed here because its function has been incorporated
in the treatment of P», which differs in detail from the hardware select-
out; and a line called "request-in" appears in lines 37 and 38 of CH only
as a logical function of the variables V. and V" which are set by the
control units.

8. The hardware analog of this formulation is derived by identifying with
each channel number available to a control unit a wire from it to the
appropriate channel. Within each channel all such wires are ored together.
Putting a number in Vf2 and setting VB then corresponds to selecting an
outgoing wire in the control unit and signalling on it.

9. "If [a] device is currently communicating over the I/O interface, the
device immediately disconnects from the channel. Data transfer and any
operation using the facilities of the control unit are immediately termi-
nated, and the I/O device is not necessarily positioned at the beginning
of a block. Mechanical motion not involving the use of the control unit,
such as rewinding magnetic tape or positioning a disk access mechanism,
proceeds to the normal stopping point, if possible. The device remains
unavailable until the termination of mechanical motion or the inherent
cycle of operation, if any, whereupon it becomes available. Status informa-
tion in the device and control unit is reset, and no interruption condition
is generated upon completing the operation." (Ref. 1, p. 90).

10. Like machine checks in other parts of the system, which depend upon
sensing the parity in various machine registers and data paths, the
generation of sg is not shown in this description.

11. This reset signal is detected only by a device that is connected to the
channel at the time, and will cause this device and its control unit to
react exactly as for a system reset (see note 9), except that an interruption
condition may be generated when a mechanical operation is completed.
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EXC, instruction execution defined operation

-tn. 0
BPM P34,35,38,37,38,39 «- R:~3.4>5,6.7 aO
SSl'![ 1 : f2 al

MACn(a" 1, f , d; 0;8/p) a2
f 5 , 6 '- ((.1(,)24/ Ra2) 2:: }.1M), (V /(,)./ Ra2) a3
1 : V /t, ,2,5,s a4
-t (a6, a7)n4 a5

8SK s: ~11/ ~24/Ra2,- 0;4/(,)8/Rat a6
18K (,)8/Ra, '- s: ~11/~'4! Ra2, f(4) a7

WRD MAC9(a" 1, f, d; u) a8
1 : V /f',2,5 a9
eo, EO, E2

~ 1, U, (,)8/1" al0
DELA y (t to 1 microsecond) all
eo, E2

~ f(9) aI2
RDD 1 : t, V t, aI3

e" E' ~ 1,(,)8/1" aI4
DELA y (t to 1 microsecond) a15
e" E2

f- f(9) a16
1 : e, a17
M AC"(a" 1, s, d; E') a18

diagnose f5, 6 f- (a, 2:: }.1M), (0 ;e 2m7!a,) a19
1 : V /t 2 , 5 , 6 a20
DIAGNOSE a2I
-> (a2:), exit)m8 a22
M A(;"(112, 8, f, g; u) a23

LPSW MAC"(a" 8, f , d: u) a24
1 : i 2 V f. a25
p f- (o;lu/U) , ?(I8), (,)30/U) a26

eve h2 , p,'6(16) ~ 1, f(8) , (,)8/ I" a27
'1'8 1 : i, a28

MAC"(a" 1, f, h;u) a29
M AC9(a" 1, s, d; E(8» 1130
1 : t, a31
1 : t, a32
P34,35 f- 0, Uo a33
P'4,35 ~ ?(2) a34
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EX -,_

HIO 810
TIO

TCII

c5
co
c7
c8
c9

clO
ell
cI2
cl3
e14 =

e15 *-

bO
bi
b2
b3 :5

b4
bf.)

b6
b7
b8
b91-=----<

blO
bll
bI2
bI3 !-----J

b14
b15 10/'-----'

b16
bI7
bI8
bI9
b20
b2I
b22
b23
b24

cO
cI
c2
c3
c4

j-O
MAC9(a. , 2, r, d; t)
j, a........ (j + 1), 2· 4 Ia. + 2
j:+/o:';]O
(,)8/]0 ....... /«(,)"/ ]0) V «(,)8/ Ra,); (a, = 0); (,)8/1'/
i a ....... «fl"/ ]0) Cl £1,5) A t5 A t.
MAC9(a" 1, f, d; u)
P34,35 - (V /(,)8/1') A «A/«(,)8/f')/U), V/«(,)8/ I")/u)
u _ (a2)T(.i Ra, ) - 1
0: .iu
u _(,)32/p
o : «4) T a,)J.P34.35

--. (bl S, bI4)n4
6)24/p _ /(6)24/ Jt'2); (a. 0); (6)24/p)/
(,).4/p ....... (24)Ta.
--. (exit, bIo)ns
Ra, u
ho (L Ra,) - Rg, X 23•

hi _ (.i ~a) - R;.3 X 23•
hz _ (.iRJ.wlv(41Taa) _ R*~lv(41Ta3X 232

Ra,....... /(a2) T o; + hi); (0) ho + hi); ",-,(a2)T 1(1 + ho+ h,)/
k _ (.iRa,) - R;.I X 23•
--. (b2a, b24)n4
6)24/p ....... /«(,).4/p); (k > h.); (24)Taz/

(,)24/p _ /(6)24/p) ; (k S h2); (24)Ta.j
1 : i.
i _ .ifl3 / (,)" / (24) T a ,
o :B;,
P34,3.- I , I
o :i
1 : gz
o : B~
P'«,3. - I, 0
--. (exit, C9)n4
B;o ....... 1
1 : B;o
--. (cl2, cI3, cl5)n.

P34,3. - 0, B~
B;o - I
1 : B~ A i 0
I : B;o

HlO

DXLE

Bxll

DC BCR

BC BCR ~

SIQ TIO
Tell

HIO 510
TCR TIO

neT BeTH --

lJAL DALR

BAL BALE
,BeT BeTH

DXU BX'LE

DC BAL nCT

DCR BALR BeTH.
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LR Ra, f- Raz dO
L BT MAC9(az, 4, n4 , d; Ra,) di
BTH M AC9(az, 2, s, d; w'o/ Ra,) d2

LH M AC9(az, 2, f, d; w'o/ Ra,) d3
1 : io d4
rio/Ra,

f- R~t X e(I6) d5
LA Ra,

f- e(8), (24)T az d6
src rc M AC 9(az, 1, n4 , d; w8

/ Ra,) d7
LPR LNR k f- (1. RaZ) - R~z X 23 2 d8LTR LeR

k f- ((Ik), (-Ile), le, -le).lIOO'7 d9
Ra,

f- /(32)Tle; (k < 0); ~(32)TI(I + k)/ dIO
P34,3' f- (k = 23

' ) V ((k > 0), (k < 0)) dll
t, f- /\ /P34,3.,30 dI2

LM STM -- i, j f- a" a2 dI3
MAC9(j, 4, n4 , d; R i

) dI4
1 : io dI5
1 : t, V i. dIG
i : a3 dI7
i, j f- (241i + 1), (224Jj + 4) dI8
i,jf-a

"a
2 dI9

-> (d2I, d22)ns d20
LM R i

f- ?(32) d2I
BTM MAC9(j, 4, S, d; ?(32)) d22

i : a3 d23
i, j f- (24[i + 1), (2241j + 4) d24

~~~:~~ }-- u f- Ra, eO
~I~~~ :~~~ } __ 1 : io f- 0 ~ 21a, ei

u f- Ra" Ra,+! e2
j f- 2°la2 e3
-> (e5, e6, e7, eIO)n4 e4

SLL SLDL U f- j!u e5
SRL BRDL U f- j Xu e6
5LA 8LDA k f- Uo ~ ai+'/u e7

a'/u f- j! a'/u e8
P34,3., t, f- (k V (V /u) /\ (uo, uo)) , k /\ P30 e9

SRA BRDA a'/u f- j Xa'/u eIO
a'+'/u f- Uo X e(j + 1) ell
P34,3. f- (V /u) /\ (uo, uo) eI2
-> (eI4, eI5)ns eI3

~~~ :~~} Ra, f- U eI4
~~~~ :~~~} Ra" Ra,+! f- U eI5
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CL ON X MAC·(a" 4, f, d; v) fO
CLROR V <- R a

2 £1NRXR

U <- Ra, f2
CLloI MAC·(a l , 1,£, d;u) f3NIXI

v <-w8J 10 f4
1 : t, f5
-> (f7, f8)n4 f6

CLR CL eLI P34,35 +- «..Lu) > ..LV), «..LU) < ..LV) f7
OR 0 OI} U +-U (1\, V, ~)ns V f8NRN NI
XR X XI

-4 (flO, £11)n6 f9NRN} Ra, <-U flOon 0
XI< X

Nt 01 XI MACO(a
"

1, s, d; u) f11
1 : t, V is fl2

P34,3S +- 0, V Ju £13
CLC oc ao +- al fl4
NO xc

P34"S +- 0, 0 fl5

al" <- 22411 + al" £16
MAC·(a

"
1, f, d; u) £17

MAC·(a2 , 1, f, d; v) fl8
1 : t. V t, £19
-4 (f21, f23)n4 f20

OLO P34,35 +- J«..Lu) > ..LV), «..Lu) < ..Lv); V JP,4,35; P34,3"J £21
= al : 224 lao + 10 £22

oc NO xo U <- U (1\, V, ~)n5 V £23
P34,35 <- 0, P35 V V Ju £24
M AC·(al , 1, s, d; u) f25
a, : 2241ao + 10 f26 =ft

P34,35 +- ?(2) f27
-7 (exit, f29)n4 f28

oc NC xc al +- ao f29
MAC·(al , 1, s, d; ?(8» f30
al : 224 lao + 10 £31
al +- 224 lal + 1 f32
j +- 11 gO
MAC"«224Ia

j + 1,),1, f, d; v) gl
M AC"«224Ia

2 + 12) , 1, f , d; u) g2
r.'Jv +- w4Ju g3
MAC·«22 4!a, + 11),1, s, d; v) g4
1 : t. V t, g5
o : II g6
I, <- II - 1 g7
w4 Jv +- rx4Ju g8
o : I. g9
u <- e(8) glO
I. +- 12 - 1 gl1
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UNPK

TRT __

gI6
g17
gI8
g19
g20
g21
g22
g23
g24
g25
g26
g27
g28
g29
g30
g31
g32
g33
g34
g35
g36
g37
g38
g39 F--..,
g40
g41
g42
g43
g44
g45~-...J

g46
g47
g48
g49
g50 !=-I----...,

g51
g52
g53
g54
g55

g12
gI3
gI4
gl5

i f-j(I, I, I, l);P,.; (0,1,0, l)j
M AC9«224 [a2 + '2 ) , I, f, d; v)

'
2 f- '

2
- 1

U f- «(6)'jv) , (X'lv) EEl U, 6)'lv) EEl U, (X'lv) EEl U, E(4»),
11;[AC9«224 la, + I,), l,s,d;u)
1 : t, V t,

-# 0 : I, f- I, - 1
1 : i f- 1(3,2,3,3),; (12 ~ 0); (I, 2, 1,3)./
I, f- j

MAC"«2 24 [a, + I,), I, s, d; ?(8»
o : I,
I, f- I, - 1
ao f- a,
111 AC9(a, , I, r,d; u)
M AC9«224 la2 + .Lu), I, f, d; v)
1 : t,
1 : vjv
a, : 22' Iao + I"
a, f- 224 la, + 1
(6)2'1 R'), (w81 R2)

f- «24)Ta,), v
P3,,3' f- (V Iv) 1\ «a, = 2

2
' lao + '0) , (a, ~ 22'Iao + '0»

(w241R'), (w81R2
) , P3',., f- ?(34)

--7 ao f- a,
MAC9(a

"
I, f, d; u)

1I1AC9«224 la2 + .Lu), I, f, d; v)
MAC"(a" I, s, d; v)
1 : t. V t,

( = a, : 22' lao + I"
a, f- 22 1 [a, + 1

MV! MAC"(a, , I, s, d;w 81I")

PACK -- i, j f- 0,11

MAC9«22'ja
2 + I.), 1, r, d; u)

' 2 f- ' 2 - 1
v f- «(6)'jU), ff!jU) $ «a'jv) , 6)'jU) $ «6)'jU) , 6)'jV) $

(E(4), 6)'jV) EEl E(8»,
i f-j(4, 3,4,4,4),; (12 ~ 0); (1, 2,1, -, -)J
i:2
i:3
llfAC9«22' la, + I,), l,s,d;v)
1 : I., V t,

> 0 : I, f- I, - 1
-# i :4

i, j f- 0, I,

MVC MVN
JI.lVZ 0 0 +- a1

MAC"(a 2 , I, f, d; u)
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-t (g57, g60)n4 g56
>lVN MAC9(a.. I, f, d; v) g57>lVZ

u (- I(c/jv), (w4ju); .to; (a4/u), (w4jv)j g58
Ml'C MAC9(a

"
I , s, d; u) g59

1 : t. V t, g60 -

a, : 224Jao + 10 g61
a, ,2(- 224la',2 + 1 g62 f--

ED
-t (hI, 10) I, hOp~EDMK

ao, i, j, k, s (- a" 0, 1, 0, 0 hI
j (- j(l, 1, I, 1);'P'2;(0, 1,0, 1)j h2 I---

Pa4,a. (- (i A 8), (i A s) h3
1 : V It 4, . , 7 h4 -
a, : 224 lao + 10 h5 R
a, (- 224 la, + 1 h6
i (- i A (olass ~ 2) h7
s (- j A «s V V jw4/u), 1,0, S)d ... h8
j (-1 h9
u (- i(8) hLO ~
MAC9(a" 1, f, d;pattern) h11
olass +- + jaj""' pattern f:! E

2 Efl E
2,7 Efl E

2,- h12
fill +- jfill; (a, = ao); patternj h13
1 : class)! 0, 1 h14 ...=-
1 : (s A class = 3) V (ao = a,) h15
MAC9(a" I, s, d;jill) h16
1 : k h17 k-
MAC9(a2, I, f, d;source) h18
a2+- 224la2 + 1 h19
t7 +- 9 < ..La4jsource h20
u +- j, (k = (4)jsource h21
k +- lie; 9 < ..Lw4Isource; OJ h22
j +- (..Lw4jsource) C: (10, 12, 14, 15) h23
1 : s V V jw4ju h24 0MAC9(a.. 1, s, d;fill) h25
MAC9(a

"
I , s, d ;u) h26

i +- i V V jw4ju h27
ED -t (h3, h29)n4 h28

EDMK
l:s V ""' vjw4ju h29
w24j R' +- (24) Tal h30
-t (h32, h33, h34)n. h31

EDMK w24j R' +- ?(24) h32
ED P34,3' +- ?(2) h33

TRMVC h34MVN MVZ a, +- ao
MAC9(al , 1, s, d; ?(8» h35

a,: 224 100 + 10 h36~

a, +- 224 /a, + 1 h37
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MH
-+

iO
il
i2
i3
i4
i5
i6
i7
i8
i9

ilO
ill
iI2
iI3
iI4
iI5
iI6
iI7
il8
iI9
i20
i21
i22
i23
i24
i25
i26
i27
i28
i29
i30

jO
ji
j21---.....

j3
j4
j5
j6
j7
j8
j9

jlO
jll
jI2

1 : t, <- (0 ~ 23 [a2)

i, 12 <- 2, 7
~ (j6, 10)11

~ (j7, j9, jlO)n4
i <- 2
t, <- (a2 ::::; a1 + 11) /\ ((a1 + 11) < (a2 + 12»
1 : i o <- (l2 > 7) V (12 ~ 11)

ito-I
v <- f(O)
j <- 224 la, + l,

1 : i o <- 0 ~ 21a,
~ (i2, i3)n.
k, <- (1..Ra,+1) - Rg1+' X 232

k, <- (1..Ra
" Ra,+,) - R~' X 204

k, <- (1..R
a

, ) - R~' X 232

k, <- 1..Ra
,

~ (i7, i8, i9)n4

u <- Ra,

M AC·(a2 , 4, f, d; u)
MAC·(a2 , 2, f, d; u)
1 : i o

o : i 5

Ie <- 1.. ?(32)
~ (iI4, iI5, iI6)n8

k 2 <- (1..u) - Uo X 232

k 2 <- (J,u) - Uo X 2'0

k2 <- .Lu
lc <- k, (+, -, X, +-)n5 k2

~ (il9, i25, i26, i27)no
Ra, <- /(32)T1e; (Ie < 0); "-'(32)TI(I + Ie)/
~ (i2I, i22, i23, exit)n7
P34,35 <- (Ie ~ 23 2

) , V / Ra
,

PH,35 <- (Ie ~ 0), V/ Ra
,

P34,35 <- (Ie ~ 231
) V (Ie < _23 1

) V ((Ie> 0), (Ie < 0»
t, <- t, /\ /\/P34,35,30

- P34,35 <- (Ie > 0), (Ie < 0)
Ra

" Ra
, +' <- /(64)T Ie; (Ie < 0); "-'(64)T 1(1 + Ie)/

1 : i. <- t, /\ ((LJe) ~ 231
) V ((fie) < _231

) V (k 2 = 0)
Ra,+, <- /(32)TLIe; (Ie < 0); "-'(32)TI(I + (Ie)/
lc <- ([k 2) [([k1)

Ra, <- /(32)T1e; (k, < 0); "-'(32)TI(I + Ie)/
io <- (0 ~ 23 !a2)

Ie <- (1..~') - Rg' X 232

D DR

D DR

M MR

MMR

UP DP

cvn

ZAP

BL BLR

AP OP
DPMP

ZAP SP

AL ALB

AL ALB
BL BLR

c en OR

A All AR
AL ALR
8 SH SR

SL BLB
Ml{

A All AR
8 BH 8R

A,p CP SP

AAHAR~CCHCR --
MH8SlI SHy __

ALA-LR
BL BLB

AR OR DR
lIlR en

ALB BLR

ACD:M s1r
ALSLS

AU en MHlrSHI

ACDMSJ
AR OR DR

lIlR 8R

AU err Mil en
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MAC9(j, 1, f, d; u) jI3
1 : t, jI4
v+- (..la4/u) , (..l<.>4/U ) , v jI5
j : a, jI6
j +- 224!j - 1 jI7
1 : t, +- V /(9 < w'/v) , (9 ~ w'/v) , t; jI8
k, <-/lO..lw'/v; (w'/v) = (13, 1l)p'2; -lO..lw'/v/ j19
3:i<-i+I j20 ""
-+ (j22, j23)n5 j2I

A,P CP DP k +- k, (+, -, X, + )n. k 2 j22MP 8P

ZAP k +- k 2 j23
CVB

-+ (j25, j27, j28, j30, j3I)n7 j24
CVB t; +- (k ~ 23

' ) V (k < _23
' ) j25

Jt" <-/(32) T k; (k < 0); ",,(32)T 1(1 + k)/ j26
CP P34,35 +- (k > 0), (k < 0) j27

ZA"} P34,35 +- (lO'+2xl, ~ Ik) V «k > 0), (k < 0»AP j28
SP

t.« +- A/P3U5,37 j29
MP 1 : t, +- lO'+2xl, ~ Ik j30
DP lc +-/Lk; (k < 0); rk/ j3I ""

1 : t.. +- (1O(2X(I,-12))- , ~ Ik) V (0 k 2) j32

joE- 224 /a, + (1, 12) - 1 j33

j oE- 224 la, + I, j34
v oE-lO(I + 2 X 1,)T/k j35

v <- v, /(12, 1O)p'2; (k < 0); (13, 1l)P1/ j36
u oE- «4) Ta'/w2/v) , «4)Tw1/ v) j37
MAC9(j,I,s,d;u) j38

1 : V /t 4 , 5 , . j39

V <-w2/v j40

j : a, j4I

joE- 224/j - 1 j42
AP:UP SP

~ -+ (exit, j44)ns j43ZAP CVD

DP 5:i<-i+I j44

j +- 224 /a, + I, j45
a, oE- 224 ja, + 11 12 j46

lc +-/(!k2)/(lk,); o. < 0); -(/k2)/(/k,)/ j47
CVD ~ -+ (exit, j49, j50, j5I, j52)n9 j48
evB Ra

, oE- ?(32) j49
CP P34,35 <- ?(2) j50

ZA1AP P34,3. <- ?(2) j5I
BP

MP joE- 224 /a1 + 1, j52
DP

MAC9(j, 1, S, d; ?(8» j53
j : a, j54
j <- 224 1j - 1 j55
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all floating~

-> (kl , 10) /1 kO +point instructions

I : i. ~ (al ~ (0, 2, 4, 6)) V l~ /\ (a2 ~ (0, 2, 4, 6)) ki
-> (k3, k4, k5, k6, k7, k9, kIO, kl l , kI2, kI3)n. k2

LE 8TE MAC"(a2, 4, n., d; a32jF"1+2) k3
LD STD M AC9(a2, 8, n., d; F"1+2) k4

LER a32jF"1+2 ~ a32jFa2+2 k5
LDR Fal +2 ~ Fa2+2 k6

AE AU CE DE MAC9(a2, 4, f, d; v) k7ME SE SU

V~ V, E"(32) k8
AER AUR CER V~ (a32jFa2+2) , E"(32) k9DEB MER SEB SUB

HER LPER U~ (a32jF"1+2) , E"(32) klOLNEB LTER LeER

ADAW CD MAC9(a2, 8, f, d; V) kIlDO MD SD SW

ADR Awn CDR V~ Fa2+2 kI2DDR"MDB 8DR SWR

HOB LPDR U~ Fa,+2 kI3LNDR LTDB LCDR

I : i. kI4
o : t, kI5
u ~ ?(64) kI6
-> (k18, kI9, k2I, k49, k50)n. k17

HER HDB 'ilju ~ daBju kI8

I,

PER L PD1} UO ~ (0,1, uO, UO).LIO. ,7 k19I.NER LNDR
LTER LTDR
!.CER LCDR j, k ~ (1..w7j aBju) , j 1..aBju;uo; -1..fiBjuj k20

CD CDR AE ADy - o :i ~·(1..w7jaBju) - (1..W7jfljv) k21SE SD AER ADR
SER SDR AU AW

'fiBju ~ (4 X ji) faBjusu sw AUK AWR k22SUR aWR CE CER

aBjv~ (4 X [i) faBjv k23
j ~ j(1..w7jaBju); (i < 0); (1..w7jaBjv)j k24
-> (k26, k26, k28, k28)n. k25

AE AER AU AUR
CE CER fiBju ~ (a2BjaBju) , E"(28) k26

BE 8EB au SUR

aBjv~ (a2BjfiBjV) , E"(28) k27
AD ADR AW AWR

k, ~ j 1..aBju;UO; -1..aBjujCO CDR k28
So SOR aw aWR

k2~ j 1..fiBjV; VO; -1..aSjvj k29
k~k, (+, -, - )n7 k 2 k30

CE

-> (k32, k32, k66)n7 k3I CER
CDR
CD

Uo~ (k < 0) k32
i, fiBjU ~ (57) T [k k33
-> (k36, k35, k36, k36)n. k34

AU AUR asju ~ (a24jfiBju), E"(32) k35SU SUR

AE AER AD ADRy o :i k36
BE SER so SDR

AWAWR aBju~ 0, 0, 0, I, (r,x52jaBju) k37ew awn

j~j + 1 k38

o : i'2~ j 2:: 27 k39
u ~ ?(64) k40
I : P39 /\ (0 = 1..aBju) k41
I : P39 /\ (0 = 1..aBju) k42

AU AUR AW Awn -> (k44, k48, k44, k48)n. k43SU SUR SW SWR

i ~ I (+jOl.jaBju) + 4 k44
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OF. nn
UER DDR

MEMD
MERMDR

AE AEK AD A.DR
AU AURAWAWR

BE SER 80 8DR
SU BUR BW BWR
CE CEB CD CDR

LNER LNDR
LeER LODR
LTER LTDR
LPSR LPDR

HERHDRnDE DER DO DnR
ME MER MD MDR

AEAERAUAU~
ME MER DE DER

BE BER SU SUR
nEB LYER LTER

LNER LCER

AD ADR AWAWR}
MD MDR·Dn DDR
SO BDR SW SWR
HDR LPDR LTDR

LNDR LCDR +
l~~:~ ~~~: ~:~:lHr

LTERLTD~J

A:EA~~~;;;~
AU AUK AW AWR
.8U BUR SW 8WR

DE DER DO DDR
ME MERMOMDR

undefined
operation

codes

fi8/U~ (4 X i) !fi8/u
<O:j~j-i

U ~ ;(64)
(,)7/a8/u ~ (7)Tj
1 : t.. ~ (0 = ..1fi8/ u)
i1,2 ~ (l(+/a/fi8/ ii) -:- 4), (L(+/a/fi8/v) -:- 4)
fi8/U ~ (4 Xi,) h 8/u
fi8/V ~ (4 X i2) h 8/v
hl,2 ~ 2- 56 X «..1fi8/ U) , (..1fi8/ v))
k ~ k, (X, -i- )n7 h2

Uo ~ (Uo "t'. vol
fi8/U ~ (56) TL256 X k
i ~ l(+/a/fi8/ ii) -:- 4
a8/U~ (4 X i) !a8/u
j ~ (..1(,)7/aS/u) (+, -)n, (..1(,)7/a8/ v) (-, +)n, 64 - i
o : ..1fi8/U
o : i12 ~ j ;::: 27

U ~ ?(64)
o : j
(,)7/o:8/U ~ (7)Tj
U ~ ;(64)
--+ (k67, k68)ns
P3.,35 ~ (j > 127) V «k > 0), (k < 0))
--+ (exit, k69, k70)ns
o:32/p4,+2~ a32/u

p41+2 ~ U

--+ (exit, k72, k73)n,o
i14 ~ P3S 1\ (k = 0) 1\ l, 1\ t'2
i l 3 ~ P38 1\ (j < 0) 1\ t, 1\ t]2
1 : (..1lg,1,2,a) ~ (0, 1,4,8,9,10,11,12,14)
io,' ~ (a, ;::: p,M), (a2 ;::: p,M)
i2 , 3 ~ (0 "t'. 4/a2) , (0 "t'. 81a2)

i.,5 ~ (a, Cl (0, 2, 4, 6)), (a2 Cl (0, 2, 4, 6))
i. ~ ? 1\ «..1lg",2.3) = (2,3,5,6,7,13,15))/

(0,0, i" i" i" (io Vi,), (io Vi,))
i6 ~ ? 1\ «..1 r.,l.2,3) (2,3, 5, 6, 7, 13, 15))/

«i. V i5), (i. V i5), i2 , (i3 V i.), (i2 V i.), 0, 0)
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k45
k46
k47
k48
k49
k50
k51
k52
k53
k54
k55
k56
k57
k58
k59
k60
k61
k62
k63
k64
k65
k66
k67
k68
k69
k70
k71
k72
k73

10
11
12
13
14

15

exit

CE eER
CD CDR



Table 3 System reference table for programs and variables

symbol dimension Isignificance references: set, used, [via local variable]

BMT burst mode timer
CH channel HFC 3, 7; RESET 3
CP control panel EP3
CPU central processing unit IPL 1; MCIE 2; RESET 2
EIE external interruption entry
EP emergency pull
ES external signals
HFC hardware failure in channel
IOIE input/output interruption

entry
IPL initial program load RESET 4
MCIE machine-check interruption

entry
r timer
TOL time-out limiter
TU timer update
DELAY (k units) time delay BMT 3; EXC all, 15; MCIE 4; l' 0; TOL 3,7
DIAGNOSE recovery procedure EXC a21; MCIE 7
EXC instruction execution CPU 20
MACi U; k) memory access CH 11,18,23, 102, 105, 136-159; CP 18, 23;

CPU 3, 31, 32; EXC; IOIE 13, 18; IPL
6,7; MCIE 8; TU 1, 3

MALFUNCTION channel recovery procedure HFCO
RESET

MODEL-DEPEND- model-dependent system RESET 6
ENT RESET reset

POWER-OFF power-off sequence CPO
SEQUENCE

POWER-ON power-on sequence CP2
SEQUENCE

RESET system reset CP3,9
SYSTEM STOP system shutdown EP1
B S7,20 channel state

a8/ B device status byte CH2, 53, 60, 74, 81, 136; HFC 8; 10lE 18;
IPL5

Bo attention
B1 status modifier CH 70 [i]
B. control unit end
B. busy
B. channel end
B5 device end CH 69 U1
B6 unit check
B7 unit exception

B8 interruption pending in CH 2, 33, 36, 39, 52, 53, 59, 60, 73, 74, 81, 94,
channel 96, 98, 100, 137, 155; CPU 25, 26; EXC

c12; IOIE 0, 1,4
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Table 3 Confinued

symbol dimension significance I references: set, used, [via local variable]

B9 channel working BMT 5; CH 2,48,57, 58, 104, 112, 115,117,
118, 122, 127, 165; EXC c6, 14; IOIE 7, 9

s.; interplay with CPU CH 2, 37,43,56,62,64,72,79,134,165; EXC
c9, 10, 13, 15; HFC 6; IOlE 8, 10, 11, 14

Bll not operational CH 0, 1, 2; EXC c2
w8/B device address for CH 53,60,73,74,81,82,88,92,97,99; IOIE

interruption 0, 12, 15
C ~7, 64 channel command CH 2, 6, 27, 48, 58, 86, 113

oNC command code CH 2, 6, 19, 25 [k], 48, 86, 108 [k], III [k].
113,123

C7 read/write CH 10, 28
w24/n32/C data address CH 11,18,19
w8/n32/C device address (temporary) CH 77,93
C32 chain-data CH 8, 16, 21, 66, 67, 81, 156
C33 chain-command CH 67, 79, 91, 156
C3, suppress length indication CH 8,66,81
C3S skip CH17
C36 program-controlled CH 28,114

interruption
C37,38,39 unused positions CH 26 [k], 111 [k]
Cl'O(") ignored positions
w16/ C count CH 8, 9, 16, 20, 21, 26 [k], 66, 81, 111 [kl, 136,

154; HFC 8
CAW ~7, 32 channel address word CH 2, 48, 58, 86, 102, 136, 154; HFC 8;

!OlE 13
n'/CAW protection key CH 103; MAC 10
CAW,,6,6,7 unused positions CH 103
(,)2'/CAW command address CH 6,23,24,31,70, 105, 106, 110

CM ~7, 4 channel model characteristics
CMo scan always/on request- CH35

in only
CM1 ,2 , 3 degrees of hardware shar- HFC 1, 2; TOL 1

ing between CPU and
channels

E 4,8 external lines
EO direct control out EXC alO
EI direct control in EXC a18
EO timing signal out EXC alO, 12, 14, 16
E3 timing signal in ES

F 4,64 floating-point registers CP 20,25; EXC k 3-13,69,70; Table 5
t 3, 16 instruction register CPU 3,12-19; EXC b l : EXC

n8/ /0 instruction code CH 88-93, 101, 122, 123, 143-163; CPU 7, 8;
EXCbl, 3, 5, d9, g58,k1, 19,10, 4, 5; HFC9

w8//0 immediate data byte EXC alO, 14, 27, b4, 7, f4, g53
iJ -,9 from memory in MACi CH 13, 14; MAC 19, 20, 22

operation
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Table 3 Continued

symbol dimension significance references: set, used, [via local variable]

K :$213, 4 memory protection keys EXC a6, 7; MAC 10
(one per bank of 211 bytes)

M :$224, 9 main memory CH30, 109; EXC a3, 19,11; MAC 8, 9,19,23;
Table 5 Cols. A and P

M o parity column CH 13, 14 [iJo]
N 144,11 navigation matrix CPU 9
0 16,16 decoding matrix CPU 8
p :$7,9 polling lines CH 2, 34, 39, 40, 44, 78, 115, 116, 117, 119,

121; TOL 5
R 16,32 general registers CP 19, 24; CPU 14-19; EXC; Table 5
S :$7, 18 active subchanncl status

a8/S channel status byte CH 2,9,48,58,67,86, 131, 136-159; HFC 8;
IDlE 13; IPL 5

So program-controlled CH 28, 59, 114, 136; IDlE 14
interruption

SI incorrect length CH 8, 66, 81
S2 program check CH 12, 26,30,66,81, 103, 107, 109, 111, 123,

128, 136, 154, 156; MAC 16
S. protection check CH 66, 81, 136, 154; MAC 16
S. channel data check CH 13, 15; HFC 1
S. channel control check HFC1
Ss interface control check CH 41, 51, 52, 62, 63, 116, 117, 125, 126, 141;

HFC 1; TOL 0
S7 chaining check CH 28,66,81

s, interruption pending in CH 2,9,48,55,58,71,81,86,87-93,136,137,
sub channel 145, 148, 153, 155

89 subchannel working CH 2, 48, 50, 58, 71, 81, 86, 87-93, 137, 145,
148, 165

I»s/8 working-device address CH 6,45,47,53, 60, 73, 74, 77, 81, 82, 84, 88,
92,93, 115, 117; IDlE 12

T :$256, 110 sub channel storage CH 4,48,58,85,86,99; IOIE 16, 18, 19
U :$7, 16 channel/control unit CH 7, 14, 16, 39, 49, 55, 68, 76, 78, 96, 115,

interface 124, 130, 151, 160, 164
Uo command-out or status-in CH 36,41,52,63, 117, 120, 126; TOL 1
UI service-out or service-in CH 36,41,52,63,65, 117, 126; TOL 1
U2 address-out or address-in CH 36,41,42,52,63, 117, 126; TOL 1
U. interplay in/out CH 28, 40, 41, 51, 52, 62, 63, 116, 117, 125;

I TOL 1, 5, 9
U. suppress-out CH 2, 29, 36; HFC 5
Us operational-out CH 2; HFC 5
Us operational-in CH 61; TOL 5, 9
U7 parity bit for bus CH 15, 41, 52, 63, 117, 126
I»s/U bus for data or device CH 11, 13-15, 18,41,45,52,53,63,67,68,74,

status 117,126,128,129,149-159
V :$56, 21 control unit status

Vs service request CH 37,38
VI' channel number CH 37,38
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Table 3 Continued

symbol dimension significance references: set, used, [via local variable]

a 4 effective addresses
ao temporary address
a, first address CH 82; CPU 16, 19; EXC a, b11, b, cl, d, e,

f, g, h, iO-5, 19-30, i, kl-13, 69, 70, 11-3
a. second address CPU 12, IS, 18; EXC a3-7, bl, 2, 13, 14,23,

24, d6, d, e3, fO, 1, 16, 18, g, h18, 19, i7-9,
jO-16, kl-12, 11-3

as third address CPU 13; EXC b18, 19, d17, 23
address sw 24 address switch CP 16-25; MAC 6
alternate PIx 12 alternate prefix MAC 4
b 8 console buttons CP5-7

bo load key
bl reset key
b. interrupt key
b3 stop key
b. start key
b. set-instruction-counter key
be display key
b7 store key

cpu status 8 X me CPU registers stored in MCIE8
diagnosis

datasw 32 data switch CP 16, 23-25
display lights 32 display lights CP 18-21
e 6 external signal lines

eo write out EXC a10, 12
el read out EXC a14, 16
e. hold in EXC a17; TU 0
es machine-check out MCIE 3,5
e•.• IPL in-lines CP 5-7

external signals 6 set by E3 EIE 0,2,3; ES 0
I failures (parity, etc.) HFC 4; IPL 9; MAC 22; MCIE 0, 9;

RESET 0
fill 8 fill character EXC h13, 16,25
g 3 general interlock bits RESET 0

go interruption interlock CH 62,64,72,82,87-92, 117, 122, 123, 132-
157; CPU 27, 28; EIE 1, 4; HFC 9; !OlE
0,2; MClE9

9, I/O interruption retraction CPU 30; !OlE 3, 17
g. burst-timer control BMT 0,1; CH 48,58, 165; EXC c5; !OlE 6

h 5 interruption holder CPU 25, 26, 29; RESET 0
ho machine check MClEI
hi program check CPU 24; MClE 9
h. supervisor call EXC a27; MClE 9
ha external ElEO
h. I/O !OlE 1
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Table 3 Continued

symbol dimension significance references: set, used, [via local variable]

i,j, k local variables
1 3 field lengths CPU 17; EXC f22, 26, 31, g, h5, 36, j
load unit sw 11 load unit switch CH 5, 6; lPL 5, 6
m 11 machine (model) char-

acteristies
mo protection feature CH 103; CPU 2; MAC 11; No
ml decimal feature No
m2 floating-point feature No
ma direct control feature No
m. interlock feature No
m5 memory width in bytes CP 18, 23; MAC 6
m6 number of bytes in MClE8

machine check
m7 number of final D's in EXC a19

diagnose
m. diagnose completion EXC a22

option
77lg set IC key option CP 16
miD burst mode interval BMT2

main Pix 12 main prefix MAC 4
n 11 navigation vector CPU 9

no instruction set options CPU 10
(mo,ml, m., ma, m.)

nl privileged operations CPU 10
n. format (RR, RX, RS, CPU 11

SS, SI)
na starting line in EXC CPU 21; EXC 0; TU 0
ji4/n branch control in EXC EXC

P 64 program status word CPU 31, 32; EXC a26; lPL 7
oNP system mask CPU 25,26; EXC a2; !OlE 4
PS.9.IO.ll protection key CPU 2; MAC 10
PI2 (extended BCD /Ameri- EXC g24, h2, j19, 36

can standard) code

PII machine check mask MClEO
PH (running/wait) state CPU 36
Pu (supervisor/program) CPU 10

state
p.16(16) interruption code CPU 24, 33; ElE 2, 3; EXC a27; !OlE 0;

lPL 8; MClE6
P.2.21 instruction length code CPU 1-7,23,33; EXC bID; IPL 8
P...ss condition code CH 133,138,146,161; EXC b10, b11; Table 5
P.6 fixed-point overflow mask EXC aO, blO, d12, e9, i24
P.7 decimal overflow mask EXC aO, bl0, j29
Pas exponent underflow mask EXC aO, blO, k73
Pa9 lost significance mask EXC aO, blO, k41, 42, 72
(,)24/P instruction address CP 16, 21; CPU 3,5; EXC blO, 13, 14,23,24

pattern 8 character from pattern EXC hIl, 12, 13
field
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Table 3 Continued

symbol dimension significance references: set, used, [via local variable]

q 10 memory-access queue MAC 0,1,24
r 10 memory-access request MAC 0, 2, 24
rank 10 MAC priority (7 channels IOIE4;MAC 1

with 0 in arbitrary posi-
tion, timer update, CPU)

s local variable
source 8 character from source field EXC h18, 20-23
t 16 program exceptions CPU 1-10,21-24; EXC; MAC 15; Table 5

t, exception with code i
time-out limit 2 time limits TOL 2, 6
u, v local variables
w S7 number of control units on CH 40,116,117,119; TOL 5

interface
address compare sw address compare switch MAC 5
b index of console button CH 5; CP 6,7-14; IPL 3,4

being serviced
c channel index CH 5,37,38; CH; HFC; TOL

distinction between se- CH 3, 32, 36, 39, 44, 46, 50, 52, 5<1, 61, 73, 75,
lector and multiplexor 80,83,87-95, 121, 145, 148, 155, 165;
channels EXC [i] c4, 14; IOIE [i] 5, 9, 12

class (digit select/significance EXC h7, 8, 12, 14, 15
start/field separator/
other)

console interrupt set by interrupt key CP 11; EIE 0,2,3
emergency pull sw emergency pull switch EPO,2
h index of interruption CPU 26,27-32; EIE 1; IOIE 2

being serviced
i local variable
ipl initial program load CH 5; CP 10; CPU 0; IPL 0, 10; RESET 1
j, k local variables
load light on during initial program IPL 2, 10; RESET 5

load
manual light on when CPU stopped CPU 35, TU 0
operating state CPU operate or stop CP 12, 13, 15; CPU 34, 35; IPL 10; MAC 5,

6; RESET 1
pfxsw prefix select switch IPL3
pfx tur prefix trigger IPL3; MAC 4
power-off key

I power-off key CP4
power-on key power-on key CPl
ratesw rate switch CPU 34; TUO
s local variable
storage select sw storage select switch CP 17, 22
t subchannel index CH 47, 48, 58, 84, 85, 86, 97
tick timer pulse T 1; TU 0,5
timer alarm interval timer alarm EIE 0,2,3; TU 4
timer frequency 50,60,300 X 2' c.p.s. TO; TU 2

(0 SiS 8)
w wait for timer update MAC 2,24
wait light on during wait state CPU 36
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Table 5 Navigation matrix and reference table

N avigatiQn matrix N(j) Machine instruction(§) Results@) Program exceptiQns(j)

MM- OP M EX P A • DIFIKDFJ>KE U LS FK
0 1 2 3 45678910 Index monic Name Code R F Pu,n 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

"---
0 o .U:., 10 - - - - - - - 0 undefined operation codes S S S
1 0 1 i410020-- 1 A Add 5A 1 4 T S C
"I, 0 1 kl17220021 2 AD Add Normalized (Long) 6A 1 4 S T S T C C
"I, 0 0 kl18220021 3 ADR Add Normalized (Long) 2A 1 4

I~
s T C C

"I, 0 1 kl14200011 4 AE Add Normalized (Short) 7A ! 4 T S 7' C C
"I, 0 0 k05200011 5 AER Add Normalized (Short) 3A ! 4 S S T C C
1 0 1 i420021-- 6 AH Add Hallword 4A 1 4 T S C
1 0 1 i510002-- 7 AL Add Logical 5E 1 4 T S
1 0 0 i500002-- 8 ALR Add Logical IE 1 4
"I, 0 3 j5200203- 9 AP Add Decimal FA 4 S T T T C

I 0 0 i400020-- 10 AR Add lA 1 4 C
"I, 0 1 k04210011 11 AU Add Unnormalised (Short) 7E ! 4 S T S T C
"I, 0 0 k05210011 12 xtm Add Unnormalised (Short) 3E ! 4 S S T C
"I, 0 1 k07230021 13 AW Add Unnormalised (Long) 6E 1 4 S T s T C
"I, 0 0 k08230021 14 AWR Add Unnormalised (Long) 2E 1 4 S S 7' C
1 0 I hlO 1 1 - - - - - 15 BAL Branch and Link 45 1
1 0 0 hlO 0 1 - - - - - 16 BALR Branch and Link 05 1
1 0 1 b11 1 0 - - - - - 17 BC Branch on Condition 47
1 0 0 b11 00 - - - - - 18 BCR Branch on Condition 07
1 0 1 b811----- 19 BCT Branch on Count 46 1_.
1 0 0 ·b801----- 20 BCTR Branch on Count 06 1
1 0 2 b17 0 - - - - - - 21 BXH Branch on Index: High 86 1
1 0 2 bl7 1 - - - - - - 22 BXLE Branch on Index Low or Equal 87 1
1 0 1 i4 1 1 1 - 0 - - 23 C Compare 59 3 T S
"I, 0 I k0722200- 24 CD Compare (Long) 69 3 S T S
"I, 0 0 k0822200- 25 CDR Compare (Long) 29 3 S S
"I, 0 I kl1420200- 26 CE Compare (Short) 79 3 S T S
"I, 0 0 k0520200- 27 CER Compare (Short) 39 3 S S
1 0 I i421 1 - 1 -- 28 CH Compare Halfword 49 3 T S
I 0 1 100------ 29 CL 55 3 T S

1 0 3 fl4 0 - - - - - - 30 CLC Compare Logical D5 3 T
1 0 4 130------ 31 I CLI Compare Logical 95 3 T
1 0 0 flO------ 32 CLR Compare Logical 15 3
m, 0 3 j5201102- 33 CP Compare Decimal F9 3 S T T
1 0 0 i4011-0-- 34 CR Compare 19 3
1 0 I j3-1-0-1- 35 CVB Convert to Binary 4F 1 T S T C
1 0 I jO----OO- 36 CVD Convert to Decimal 4E S S S
1 0 1 iOI33-01- 37 D Divide 5D 2 T S S
"I, 0 1 k073-1122 38 DD Divide (Long) 6D I S T S T C S
"I, 0 0 k083-1122 39 DDR Divide (Long) 2D I S S T C S

"I, 0 1 k043-1112 40 DE Divide (Short) 7D ! s T S T C S
"I, 0 0 k053-1112 41 DER Divide (Short) 3D ! s S r C S
1 I 4 a19 - - - - ~ - - 42 diagnose Diagnose 83 4 S S S
"I, 0 3 j5103414- 43 DP Divide Decimal FD S TT S T S
1 0 0 ;0033-01- 44 DR Divide 10 2 S S
"I, 0 3 hOOI----- 45 ED Edit DE 3 S TT T
"I, 0 3 hOIO----- 46 EDMK Edit and Mark DF It 3 S T T r
1 0 1 bO------- 47 EX Execute 44 S S S
"I, 0 0 k090--120 48 HDR Halve (Long) 24 1 S S
"I, 0 0 k060--II0 49 HER Halve (Short) 34 ! S S

1 I 4 COII----- 5(} HID Halt I/O 9E 4 S
1 0 I d7f------ 51 IC Insert Character 43 I T
m. 1 0 031000--- 52 ISK Insert Storage Key 09 1 S S S S
1 0 I dl f - - - - - - 53 L Load 58 1 T S
1 0 I d6------- 54 LA Load Address 41 1
"I, 0 0 k091--020 55 LCDR Load Complement (Long) 23 I 3 S S
"I, 0 0 k061--010 56 LCER Load Complement (Short) 33 ! 3 S S
1 0 0 d8------- 57 LCR Load Complement 13 I 4 C
"I, 0 1 kOl f----- 58 LD Load (Long) 68 I S T S
"I, 0 0 k03------ 59 LDR Load (Long) 28 1 S S

-"~--_.

"I, 0 1 kOOl----- 60 LE Load (Short) 78 ! S T S
"I, 0 0 k02------ 61 LER Load (Short) 38

II
! S S

I 0 1 d3------- 62 LH Load Hallword 48 T S
1 0 2 d13 10 - - - - - 63 LM Load Multiple 98 . T S
"I, 0 0 k091--020 64 LNDR Load Negative (Long) 21 1 2 S S
"I, 0 0 k061--010 65 LNER Load Negative (Short) 31 ! 2 S S
1 0 0 d8------- 66 LNR Load Negative 11 I 2
"I, 0 0 k091--020 67 LPDR Load Positive (Long) 20 1 2 S S
"I, 0 0 k061--010 68 LPER Load Positive (Short) 30 ! 2 S S
I 0 0 d8------- 69 LPR Load Positive 10 1 3 C

1 I 4 a24------- 70 LPSW Load PSW 82 4 S T S
1 0 0 dO------- 71 LR Load 18 1
"I, 0 0 k091--020 72 LTDR Load and Teat (Long) 22 1 3 S S
"I, 0 0 k061--010 73 LTER Load and 'Iest (Short) 32 ! 3 S S
1 0 0 d8------- 74 LTR Load and Test 12 I 3
I 0 I i0122-00- 75 M Multiply 5C 2 T S
"I, a 1 k074-0122 76 MD Multiply (Long) 6C 1 S T S T C
"I, 0 0 k084-0122 77 MDR Multiply (Long) 2C 1 S S T C
"I, 0 1 k044-0122 78 ME Multiply (Short) 7C , S r S T C
"I, 0 0 k054-0122 79 MER Multiply (Short) 3C ! S S 7' C

"----_._- ---~"""----
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Table 5 Cantinued
----~" "" "~-

Navigation matrix N(S) fit achine instruction(§) ResuUs(j) Program exceptions@

MM- OP M EX P A S D IF JK DF DK E U LS FK
0 I 2 3 45678910 Index monic Name Code R F/J34,35 I 2 3 4 5 6 7 8 9 10 II 12 13 14 15

-" ---- ----
I 0 I i42 2 0 3 1 - - 80 MH Multiply Halfword 4C I T 8
m, 0 3 j5102304- 81 Ml' Multiply Decimal FC 8 TT 8 T
I 0 0 i0022-00- 82 MR Multiply IC 2 8
1 0 3 g5412----- &1 MVC Move D2 TT
l, 0 4 g53------- 84 MVI Move 92 8 8
1 0 3 g54 0 2 ----- 85 MVN Move Numerics Dl TT
1 0 3 gO------- 86 MVO Move with Offset FI TT
1 0 3 g5402----- 87 MVZ Move Zones D3 TT
1 0 1 £0100---- 88 N And 54 1 2 T 8
1 0 3 fl4 1 0 - - - -- 89 NC And D4 2 TT

""" ""~

1 0 4 13101---- 90 NI And 94 2 8 8
I 0 0 11100---- 91 NR And 14 I 2
I 0 1 £0110---- 92 0 Or 56 I 2 T 8
I 0 3 fl4 I 1- - - -- 93 DC Or D6 2 TT
I 0 4 13111---- 94 01 Or 96 2 8 8
1 0 0 fll10---- 95 OR Or 16 I 2
1 0 3 gl2 - - - -" - - - 96 l'ACK Pack 1'2 TT
m, 1 4 a13 - - - -,- - ~ 97 RDD Read Direct 85 8 8 TT
I 0 1 iOl1020-- 98 S Subtract 5B I 4 T 8 C
m. 0 1 k07221021 99 SD Subtract Normalized (Long) 6B 1 4 18 T 8 T C C

m. 0 0 k08221021 100 SDR Subtract Normalized (Long) 2B I 4 8 8 T C C
m. 0 1 k04201011 101 SE Subtract Normalized (Short) 7B ! 4 8 T 8 T C C
m, 0 "0 k05201011 102 SER Subtract Normalized (Short) 3B ! 4 8 8 T C C
1 0 I i42 1 0 2 1 - - 103 SH Subtract Halfword 4B I 4 T 8 C
I 1 4 cOOZ----- 104 SID Start I/O 9C 4 8
1 0 I i511012-- JfJ5 81; Subtract Logical 5F I 3 T 8
I 0 2 0020----- 106 SLA Shift Left Single 8B I 4 C
I 0 2 el 2 1 - - - - - 107 SLDA Shift Left Double 8F 2 4 8 C
1 0 2 el 0 1 - - - - - 108 SLDL Shift Left Double Logical 8D 2 8
1 0 2 eOOO----- 109 SLL Shift Left Single Logical 89 1

""---
1 0 0 i50 1 0 12 - JlO SLR Subtract Logical IF 1 3
m, 0 3 j5Z0120;;- JlI se Subtract Decimal FB 4 S T T T C
I 0 0 .0--""---- Jl2 Sl'M Set Program Mask 04 4 ,
I 0 0 1401020-- Jl3 SR Subtract 1B 1 4 C

,
I 0 2 0030----- 114 SRA Shift Right Single 8A I 3
I 0 2 el 3 1 - - - - - 115 SRDA Shift Right Double 8E 2 3 8
I 0 2 el 1 1 - - - - - Jl6 SRDL Shift Right Double Logical so 2 8
1 0 2 0010----- 117 SRI, Shift Right Single Logical 88 I
m. 1 0 030------ 118 SSK Set Storage Key 08 8 8 8 8
1 I 4 a1 - - - - - - - 119 SSM Set System Mask 80 8 T

"---------- -"-----
I 0 1 d I s - - - - - - 120 ST Store 50 8 8 8
I 0 1 d7s------ 121 STC Store Character 42 8 8
m, 0 1 kOls----- 122 STD Store (Long) 60 8 8 8 8
m. 0 1 kOOa----- 123 STI<: Store (Short) 70 8 8 8 8
1 0 1 d2------- 124 STH Store Halfword 40 8 8 8
1 0 2 d13 s I - - - -- 125 STM Store Multiple 90 TT 8
m. 0 1 k04211011 126 SU Subtract Unuotmelized (Short) 7F ! 4 8 T 8 T C
m. 0 0 k05211011 127 SUR Subtract Unnormalised (Short) 3F t 4 8 8 T C
1 0 0 827------- 128 SVC Supervisor Call OA
m. 0 1 k07231021 129 SW Subtract Unnormalised (Long) 6F 1 4 8 T 8 l' C

"" -------~

m, 0 0 k08231021 130 SWR Subtract Unnormalised (Long) 2F I 4 8 8 T C
1 1 4 0000----- 131 TCH Test Channel 9F 4 8
I 1 4 c002----- 132 TID Test I/O 9D 4 8
1 0 4 b6------- 133 TM Test under Mask 91 3 T
1 0 3 g46-2----- 134 TR Translate DC TT
1 0 3 g36------- 135 TRT Translate and Test DD 2) 3 T
m. 0 4 028------- 136 TS Test and Set 93 2 8 T 8
I 0 3 g23------- 137 UNl'K Unpack F3 T T
m, 1 4 08------- 138 WRD Write Direct 84 8 8 T
1 0 I fO 1 2"0 - - - - 139 X Exclusive Or 57 I 2 T 8 I
1 0 3 fl4 1 2 - - - - - 140 XC Exclusive Or D7 2 T T
1 0 4 13121---- 141 XI Exclusive Or 97 2 8 8
1 0 0 flI20---- 142 XR Exclusive Or 17 1 2
m, 0 3 j50 1 - 2 0 3 - 143 ZAl' Zero and Add F8 4 8 TT T C

CD Column Significance ® Specifies the number of gen- (1) Program exceptions occurring in instruction execution cause the instruction to
erel and floating-point regis- be suppressed (8), terminated (T)j or completed (0). (Exceptions 5 and 6 may

0 Feature options ters set, and the number of also occur during instruction fetch.) The exception codes are:
1 Privileged operation distinct values to which the code abbr name code abln- name
2 Format condition code may be set.

Starting line in EKe t Rl is set (not specified 8 IF Fixed-Point Overflow
3 by address) 1 Ol' Operation 9 IK Fixed-Point Divide4-10 Branches in EXC t Rl and W are set (not 2 M Privileged Operation 10 DF Decimal Overflow

® The mnemonics, names, and specified by address) 3 EX Execute 11 DK Decimal Divide

hexadecimal codes assigned in • One to sixteen cyclically 4 P Protection 12 E Exponent Overflow

Reference 1. contiguous registers are 5 A Addressing 13 U Exponent Underflow
set. 6 S Specification 14 LS Significance

1 D Data 15 FK Floating-Point Divide

----
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Table 6 Operation decoding matrix 0

Second Hexadecimal Digit

a 2 3 4 5 6 7 8 9 A B c D E }'

a

2

3

4

5

6

:£0
i=I

" 7
S
.~

i 8~

:::i
~ 9

A

B

C

D

E

F

SPM BALR BCTR BCR SSK ISK SVC
0 0 0 0 112 16 20 18 118 52 128 0 0 0 0 0

LPR LNR LTR LCR NR CLR OR XR LR CR AR SR MR DR ALR SLR
69 66 74 57 91 32 95 142 71 34 10 113 82 44 8 110

LPDR LNDR LTDR LCDR HDR LDR CDR ADR SDR MDR DDR AWR SWR
67 64 72 55 48 0 0 0 59 25 3 100 77 39 14 130

LPER LNER LTER LCER HER LER CER AER SER MER DER AUR SUR
68 65 73 5E 49 0 0 0 61 27 5 102 79 41 12 127

STH LA STC IC EX BAL BCT BC LH CH AH SH MH CVD CVB
124 54 121 51 47 15 19 17 62 28 6 103 80 0 36 35

ST N CL 0 X L C A S M D AI, SL
120 0 0 0 88 29 92 139 53 23 1 98 75 37 7 105

STD LD CD AD SD MD DD AW SW
122 0 0 0 0 0 0 0 58 24 2 99 76 38 13 129

STE LE CE AE SE ME DE AU SU
123 0 0 C 0 0 0 0 60 26 4 101 78 40 11 126

SSM LPSW diagnose WRD RDD BXH BXLE SRL SLL SRA SLA SRDL SLDL SRDA SLDA
119 0 70 42 138 97 21 22 117 109 114 106 116 108 115 107

STM TM MVI T8 NI CLI 01 XI LM 810 TIO HIO TCH
125 133 84 136 90 31 94 141 63 0 0 0 104 132 50 131

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

MVN MVC MVZ NC CLC OC XC TR TRT ED EDMK
0 85 83 87 89 30 93 140 0 0 0 0 134 135 45 46

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

MVO PACK UNPK ZAP CP AP SP MP DP
0 86 96 13 0 0 0 0 143 33 9 111 81 43 0 0

RR

UX

RS
or
SI

SS

Table 7 Normal uses of effective addresses

Format First operand Second operand

RR (register, register) Ra, or Fa, Ra. or Fa.

RX (register, storage indexed) Ra, or Fa, Ma.

RS (register, storage) Ra, Ma.

S1 (storage, immediate) Ma, (,)8/ ]0

SS (storage, storage) Ma, Ma.
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MCIE, machine check interruption entry system program

2 0 : PI3 /\ V If
ho +- 1
....... CPU; 26
e3 +- 1
DELAY (! to 1 microsecond)
e3 +- 0
P,16"6' +- f (16)
DIAGNOSE
M AC9(l28, m6, s, g; cpu status,

- hI, h2 , go,f +- f

EIE, external interruption entry system program

o
1

2
3
4
5
6
7
8
9

~ h, +- V Itimer alarm, console interrupt, external signals 0

r=- 0 : go /\ (h = 3) 1
P,I"On) +- f(8), timer alarm, console interrupt, external signals 2
timer alarm, console interrupt, external signals +- 3
• (timer alarm, console interrupt, external signals) /\ p,,.(")

- go +- 0 4

"
ES, external signals system program

external signals +- (w61E3
) V external signals

TU, timer update system program

o

~ 0: tick /\ (manual light = off) /\ (rate su: = process) /\ 0
("-'e2 /\ n3 = a13)

MAC"(80, 4, f, g;j) 1
k +- (32)T (J- j) - 2" X 300 + timer frequency 2
M AC"C80, 4, s, g; k) 3
timer alarm +- timer alarm V (..Lk) >..Lj 4

'-- tick +- 0 5

T, timer system program

C DELAY ((1 + timer frequency) seconds)
tick +- 1

RESET, reset defined operation

---l f, g, h, q, T, W +- f

operating state, ipl +- stop, 0
....... CPU; 35
....... (CHO,CHI

, CH2
, CH3

, CH4
, CH5 CH6

) ; 2
....... IPL; 0
load light +- off
MODEL-DEPENDENT RESET

o
1

o
1
2
3
4
5
6~

258a



CPU, central processing unit system program

IPL~
L.:. 1 : ipl

...--.,-l
;i: t, P32.33 +- E(l8)

t, <- rno A V IP8 .s , io.r i

,....., MAC· ((1.w·4IP), 2, f, i; l.LP3a,33)
P••,.3 +- (2)Tl + 1.P.2.33
w·41P +- (24)T2 + 1./,rlP

< 1: V n.,
=- 1.ha,33: +/0:'11"

--' i _ O.L.L~go.I.' .a
---:J' 4,5.6.7

n- N'
tI.' ...... no, n, A P,s

...- -> (12,14,13,17, 19)n.
j!!.~ a• ...... 1.(,)4/1"
'!"..; a3, j +- (.1.w4/1"), 0
~~ j ...... (0 ,= 1.(,)4/1") X 1. R.L .41]°

a2 _ 224 I j + (1.w'21r, + (0 ,= .1.a41n X .1. R.L .41]'
a, _ 1.a4/w811"

~.~ l _ (1.(,)8/1"), (1.a4/w8IIO), (.1.(,)4/1")
a._224 I (1.w'2II') + (0'= 1.a 4/ I") X 1.R.L·41]2

~~ a, _ 224 I (1.(,) 121 I') + (0 ,= 1.a 41 r, X 1. R.L .41]'
EXC

-=- 1 : (n. = bO) A ~ V Its ,5 •6

---=- 0: V It
P32,33 - ((14 A t,) V 7) A P32,;<"
h"P,'606' _1, (16)T ?'ltltO

I---------i 0: vlh A (0,1, I,P7' (fY.7IP) X B8)
>40'>:---; h _ ((h A (1, 1, 1, P7' (fY.7Ip) X B8»1\°)0

go - (hY. (0, 3, 4»
12 1 :go'

h. -0
f...--.-.=.. 1 : g, A (h 4)

M AC9((48 , 40, 32, 24, 56)., 8, s, g; P)
MAC9((112, 104,96,88,120).,8, f, g;P)

I----l P,'608' +- ?(18)
operating state - Istop; rate sw = process; operating statel

RE~

L:.. on: manual light +- loff; operating state = stop; on/
= on: wait light - loff; PH; onl

o
llE-----,

2
3
4
5
6 -=-----
7
8
9

10
11
12 -

~: il
15 J
16 (...--
17
18
19
20 E-

21
22
23
24~-"'"

25 -=
26
27
28
29
30
31e

32
33
34 ~
35
361-';i:~-..J
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MAC'U; k), memory access defined operation

r, q, ~ 1, ",y Iq
;6 i : (qranklrank)o

r, s,.w ~ €(4), Iw; i = 8;iz = fl
~. 2'2J» :

i, ~ 1..lmainpjx;pfx tgr; altemate pfx/, (12)T io
1: (operating state stop) Y (address compare sw = normal) V

(address compare sw = instruction) /\ Ua r6 i)
operating siaie-«Ioperate; /\ Iwm5Iaddress sw = (24) T io; stop I
So ~ 0 r6 i,lio
o : s, ~ io :2: p.M
io ~ (J.LM) 11.. ?(24)
u ~ (1..K"L.,3m 4l TiO), 1..IPS.9,'0.ll; i S 7; (0141CA W')I
S2 ~ rna /\ Uz.a Cl s, d) /\ (uo r6 u,) /\ (uo r6 0) /\ (u, r6 0)

1 : U3 g) Y '" V Is
s ~ /1/5/ ,°(3)

i : 7
i 4 , 5 , 6 ~ t•.5 , 6 V S2,I.O

S~.3 ~ S~,3 V S'.2

1 : So Y U2 = s)
i, :s
'J ~ Ua ~ OI;')IIM
k ........ E/uN']

:s; i : 7
/; ........ V I'" r6/J
Uo 1OIi')//M ........ (=/EU" 8)\k) El1 fU" 8)\k
q ........ Ir/\1lJY t;i3 = h ; ql
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IOIE, input/output interruption entry system program

...----~ B;, go, P.I"OB) -- 0, 0, ((8)Ti) , U)s/B'
h.--V/Bs

o :go /\ h = 4

gi -- 0
i -- ((BB 1\ o//P) .'lrank/a7/ rq.nk)o
o : i
1 : g2
1 : B~
Bio-- 1
1 : B~ 1\ i = 0

f----==-l1 : BiD
Bio -- 1
o : (i ;= 0) V (U)s/B') C: U)s/S'
MAC9(64, 8,5, g; CAW', e(8), (as/S'), ?(16»

I--~ S~, Bio-- 0, 0
j __ I J...ws/Boi (U)s/BO)oi J...(U)S/B")I.2.3/

1 : V /T~ .•
gi -- 1
MAC·(64, 8,5, g; (U)32/Ti

) , (a8/ BO), (as/T\
/(WIB/c,32j T i ) ; (~ /\ 1~)VT~VT;; ?(16)/)

(as/T I ) , T~ __ e(8), T~ /\ T~

TOL', time-out limiter system program

s~ -- 1
o :C~ /\ U; /\ CM; V V /aa/if
i __ time-out limito
DEL A Y (1 time-out limit unit)
O:i--i-l
o :n: V rr. V if,
i -- time-out limit l

DELA Y (l time-out limit unit)
O:i--i-l
1:if,Vtr.

H FC', hardware failure in channel c system program

M ALFUNGTION RESET
o :S~ V C~ /\ S: V S:
O:C~

-> CH'; 0

t. -- 1
cr..5 -- /cr..5; 7; 1,0/
o :s;
-> CH'; 0
k __ (7 1\ CAW), (7 1\ a8/B'), (7 1\ a8/S'), (? 1\ WIB/C')

1 : go V 1:.7 C: O. 1
MAC'(68, 2, 5, g; k.I"(iB»
M AC'(64, 8, 5, g; k)

o
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18

19

o
1
2
3
4

, 5
6
7
8
9

o
1
2
3
4
5
6
7
8
9

10
11
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TllIbl.IO <:111.11...1 progrom I.S...."'..

eha""" Sial< I3.,.,.,.. '- S; B; S; S; B_, r- B"" ..

datatrawd'er
mpx ? 1 , 1 7-31,59--&j 61, 63, 64, 65
ee! , 1 0 1

data chaining both ? 1 0 I 22--3' '"
termination botJ:1 1 0 1 0 66-81,56--58 56,66,67, 68, 78 58,69, 70, 71, 80

commend chaining both ? 1 0 I 68-70 68 69, (70)

cheanel idle
mpx ? 0 ? ,

35-;5 35 38,43,50,54,55
sel 0 0 0 0

CPU service both ? , , , 82-165.32-34 82,104 128, 129, 130, 32.,.33, 34

lltate l\I1a!yals
mpx , 0 ? ? 82-101 82 86,87, gg,90, 91, 92, 93,
eel ? 0 , 0 101

mpx ? 0 0 0 102-114 102,104 112,114sro
"I 0 0 0 0

commlLlld chaining both ? I 0 1 104-114 (10<) 112,114

channel-initiated mpx ? , ? ? 115-130 U5 U8, 119, 120, 122, 127,
&election ..I ? 1 0 ? 128,129,130

CSW a.o.d condition mpx ? 0 1 ?
136,138,139,140, 137, 138, 139, 142, 144,

136-165 143,145,147, 146, 149, 150, 152,
code aettinr "I ? 0 1 0 151,153,161 160, 162, 164, 165

end of CPU service
mpx ? 0 ? ? 131-136,32-34 131,134 32,33,34
~I 1 0 ? 0

sy8tem«ffllrt;a.ndIPL both 0 0 0 0 <HI 0,2 5,6

H', channel c system program

fiFe -----i B~, +- 1 0

~ 1 : B~, 1
8ET~ (or."jB') , B~,9,'O,1l' (a8/S') , S;.9, C', CAW', 0:,., P' +- E(I29) 2

C
O:c 3
a,ofT +- E((~T), 10)\ E(10 X ~T) 4°:(ipl = 1) /\ (0 = .Ln3/ load unit sw) /\ b = 2 5

-

(<.l'4/CAW'), ((,)8/S'), C' +- ((24)T8), (ti}jloadunitsw), 6
l(8), ((24)TO), eI.2(8) , l(8), (I6)T24

~ U' +-1,0,0,1,0, 1, U~, 'I, l(8) 7
S~ +- (C;2 V C;4) /\ 0 = .L(,)16/C' 8 E-

-=- 1 : (0 .L(,)16/C') V S~ V V / t· 4/ a8/ S' 9

0: c; 10 ,.=..

MAC' ((.L(,)24/n32/C'), 1, f, d;(,)8/U') 11
-=- 1 :S~ 12

S: +-S: V ......,~/'J~, (,)8/ if 13
r-- U' +- 0,1,0,1,0, 1, U~, 'J"o,(,)8/U' 14

S: +-S: V ......,~/(,)9/U, 15 IE-
U'+-O,I,0,1,(C;2/\ 1 = .Lw'6/C'), 1, U~, 'I, E(8) 16

F 1 : Ca. 17
M AC'((.L(,)24/n32/C'), 1, s, d; (,)8/ if) 18

~ w24/n32/C' +- (24)T(.L(,)24/a32/C')+1-2XC:4(4) elI,I,O,O 19
W ' 6/ e' +- (I6)T(.Lw' 6/ e') - 1 20°:C;2 /\ °= .L(,)'6/C' 21 -

j+-O 22
MAC'((.Lw24/CAW'), 8, f, d; k) 23
(,)24/CAW' +- (24)T8 + .L(,)24/CAW' 24

,......=. 1 : k,4(4) ell, 0, 0, ° 25

-=- 1 : S~ +- S~ V (0 .Lw'6/k) V ......,k,37(3) el 0, 0, 0 26
'ii/c' +- (i8/k 27
«.S; +- (S~ V C;6), c; /\ era 28

~ U: +- ° 29
..:=. 1 :S; +-S~ V j V (0 ~ 81.L(,)24/a32/k) V (J.LM)':::; .L(,)24/a32/k 30
~

j, (,)24/CAW' +-1, ul4/ a32/ k 31
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a.8/S ' ...... e(8)
1 : go
P34,35 0, 1

d B;o O
...!::;: 1 : go

_----~-*~ MACO(64, 8, s, g; CAW", (a.8/ BO), (a.8/SO) ,
/W16/CO; (sg 1\ S~) V sg V S~; ?(16)/)

B~, S~ 0, S~ 1\ S~

'-+---4IP34,3' 1, 0
----+-++-----iI M AC'(68, 2, s, g; e(8), a.s/S')

....--:;: 0 : go
S: ....... 1

~ MAC'(M, 8, s, g; e(32) , e(8), (a8 /S' ) , e(16»
___-+__+__~ 1 : go V n,7 Cl 0, 1

MAC'(68, 2, s, g; e(8), a.8/S' )
___-+-__1--~ S~ S~ V go 1\ (n,7 Cll, 0) 1\ (0 = 0) 1\ S~

P34,3 1, 1
----+----c=~ 1 : e, Cl 0, 1

- S~ ....... S~ V (n,7 ~ 1, 0) /\ (c = 0) 1\ sg
MAC'(68, 2, s, g; (WS/U'), as/S')

'-'l MAC'(M, 8, s, g; e(32), (ws/ U'), (a8/S' ) , e(16»
----+---~ if ....... 0,0,1,1,0, 1, U~, 'I, e(8)

MAC'(68, 2, a, g; e(8), e(8»
----+----~

r-ee- 0 : S~
- MAC'(64, 8, a, g; CAwe, (w8

/ U'), (a.8/S' ) ,
/W16/C';S~ V S;; ?(16)/)

B~, S~ ....... (B~ /\ (0 = 0»,0
f--_---,,'-l::-l 1 : go 1\ S~ /\ (E Cl wS

/ U') V li /\ C;. 1\ C;s 1\
V/(ws/if) Cl e4 $ e4

, ' $ e" 4,5

[

= 1 :go V I~

MAC'(68, 2, s, g; (ws/U'),as/S')
MAC'(M, 8, s, g; e(32), (ws/if), (as/S'), e(16»
U' ....... 0, 1,0, 1,0, 1, U:, ?, e(8)

'-----!01 P34,3' ....... 0, 0
1:n,7Cll,O

[

= 1: e, Cl 0, 0
U' ....... 0, 1,0,1,0, I, U:, 'I, e(8)

...-- --1 S~, B~, B;o, g........ 1,1,0, g. V 0 = 0

BMT, burst mode timer system program

131
132 -'='--

133
134 !--

135
136

137
138~
139
140
141
142
143 Ig,7 OP

144
00 810

145 o 1 TIO

146~ 10 roo

147
1 1 TCH

148
149
150
151
152
153
154

155 I--

156

157
158 -
159
160-
161
162~

163
164~

165

O~

1
2
3
4":::'
5

-

g........ 0
G O:g.

i ....... 100 + mlOCt":~ ~ ~crOSeCOnd)

"--"" 1 : Bg*'-- ....J
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