This manual contains the maintenance-oriented and recall diagrams referenced in the companion 7201-02 Computing Element PETOM (Form SFN-0201) and in the 7201-02 Computing Element FEMM (Form SFN-0203).

The diagrams in this manual are arranged into six categories:

Category 1. Diagnostic Techniques
Category 2. Overall Data Flow
Category 3. Data Flow by Instruction Class
Category 4. Functional Units
Category 5. Operations
Category 6. Manual Controls and Maintenance Facilities

All diagrams are in numerical order. The first digit of the diagram number reflects the category; for example, Diagram 4-210 belongs to Category 4, Functional Units. A category may be further subdivided into functional groups; for example, in Category 4, the diagrams have been grouped as follows:

Group 2. ROS
Group 3. Data and Control Registers

Group 4. Local Storage
Group 5. Serial and Parallel Adders
Group 6. Status and Control Triggers
Group 7. SCI

Prerequisite and companion manuals are:

Prerequisite Manuals
- 9020E System Introduction, Theory of Operation Manual, Form SFN-0103
- 9020D System Introduction, Theory of Operation Manual, Form SFN-0104

Companion Manuals
- 7201-02 Computing Element, Theory of Operation Manual, Form SFN-0201
- 7201-02 Computing Element, Maintenance Manual, Form SFN-0203
- 7201-02 Computing Element, Installation Manual, Form SFN-0204
- 7201-02 Parts Catalog, Form SFN-0205

First Edition (July, 1970)
This manual has been prepared by IBM Product Publications, Kingston, N.Y.

©Copyright International Business Machines, 1970
Branch on Index High, BX in (96); Branch on Index Low or Equal, BXLE (87) (3 Sheets) 5-505 Execute, EX (44) (2 Sheets) 5-506

Group 3: Status Switching Instructions

Set Program Mask, SPM (64) 5-601 Set System Mask, SM (50) 5-603
Supervisor Call, SVC (0A) 5-604 Set Storage Key, SSK (88) 5-605
Intra-Stage Switch, IK (50) 5-606 Write Direct, WRD (84) 5-607 Read Direct, RD (55) 5-608
Diagnose (83) (3 Sheets) 5-609

Group 8: I/O Instructions

I/O Instructions 5-701

Group 9: Multiplexed Element Instructions

Load Identity, I/EE (6C) 5-801
Insert, ATR, IATR (0E) 5-802
Delay, DLY (8B) 5-803
Store FSBAR, FSBS (6B) 5-804
Read FSBAR, RFSB (A1) 5-805 Move Word, MWV (DB) (3 Sheets) 5-806
Start I/O Process, SIO (9A) 5-807
Set Address Transmitter, SATR (OD), Executing in Issuing CE (6 Sheets) 5-808
Set Address Transmitter, SATR (OD), Executing in Receiving CE (3 Sheets) 5-809
Set Configuration, SCON (01) (6 Sheets) 5-810
Test and Set, TS (93) 5-811

Group 10: Display Instructions

Repack Symbols, Simplified Flow Chart 5-901 Repack Symbols, RPM (09) (21 Sheets) 5-902
Convert and Sort Symbols, CSS (02) (10 Sheets) 5-903 Convert Weaver Lines, Simplified Flowchart 5-904
Convert Weaver Lines, CWVL (03) (9 Sheets) 5-905 Load Chain, LC (02) 5-906

MANUAL CONTROLS AND MAINTENANCE FEATURES

Group 1: 7100-02 CE Console Controls

CE Control Panel (2 Sheets) 6-1 CE Rolfer Switch Indicators (2 Sheets) 6-3
Peckthorn Signal Generation (2 Sheets) 6-3
Stop Loop Routine (2 Sheets) 6-4
Stop Loop Monitored Pulsating Gate 6-5
Stop, Maintain, Address Compare Triggers, and Block Interrupt Latch (2 Sheets) 6-6
CE Machine Reset and Fence Address System Operation: IFL or PSW Restart 6-8A
Subsystems Operation: IFL or PSW Restart 6-8B
Common Routine: IFL or PSW Restart (2 Sheets) 6-9

STORAGE SELECT Switch Gating 6-10
DEFEAT INTERLEAVING Switch Gating 6-11
RATE Switch Logic 6-12
Instruction Step Routine 6-13
Single-Cycle and Single-Cycle-Inhibit Routine 6-14
Repeat Instruction Switch Logic 6-15
Repeat Instruction Switch Routine 6-16
ROS TRANSFER and REPEAT ROS ADDRESS Switch Gating 6-17
Storage Ripple Loop (Store and Display) Routine 6-18
Wait Status Gating 6-19
Wait State Microprogram Routine 6-20
Disable Internal Timer Logic 6-21
CE Check Control and inhibit CE Hardstop Switches, Logic and Error Controls 6-22
Pulse Mode Controls 6-23
Pulse Mode Operation 6-24
LOG OUT Pulsatron Logic 6-25
SCAN MODE, ROS/PROCFLT Switch Logic 6-27
FLT BACKSPACE Pulsatron Logic and Flow 6-27
1502 Adapter Unit 6-28
1502 Adapter Initial Selection - Read, Write, Sense 6-29
1502 Adapter Data Transfer - Write 6-30
1502 Adapter Data Transfer - Read 6-31
1502 Adapter Ending Sequence 6-32
1502 Adapter Sense and Status Bytes 6-33

Group 2: Maintenance Features

Scan Data and Control 6-101 Scan Clock 6-102
FLY Clock 6-103
Scan Count Latches and Decrementer 6-104
Scan Storage Address Generator 6-105
FLT Counter Decrementing 6-106
Scan-Out Bus Data Flow 6-107
Lagout Control Logic 6-108
Scan-Out Path For One Bit 6-109
Maintenance Mode Stop Clock Logic 6-110
Scan Control Triggers 6-111
Scan Control of ROS Microbranching 6-112
CE Scan/IDCE Interface 6-113
Layar Sequence (2 Sheets) 6-114
ROS Test Sequence (3 Sheets) 6-115
FLT Sequence (5 Sheets) 6-115
CE Logical Formats (3 Sheets) 6-117
SE Logical Formats 6-118
DE Logical Formats 6-119

Group 3: DE Wrap Operation

DE Wrap Bus Controls 6-201

INDEX X-1

*Note: 1052 Adapter is used only with the 9020E configuration.

ABBREVIATIONS

ABC All register byte counter ac alternating current ACR Automatic Carrier Return ad address, addressed, addressing ALD automated logic diagram ALTN Alternate amp amperes APSA alternate preferential storage area ASC address store computer ATC air traffic control ATN alternate test number ATR address translation register Atmn attention Aux Auxiliary Magnet BCD binary-coded decimal BCU bus control unit (alternate terminology for SCI) block BR brightness BSM basic storage module C capacitor CAS control automation system CAW named address word CB circuit breaker CC configuration code, also Configuration Console CCC Central Computer Complex CCR configuration control register CCCW channel command word CE Controlling Element Chaarct Choaarct claarct command system logic diagram Cmd command CPU Central Processing Unit (alternate terminology for CE) CR divide or Carrier Return CROS negative read-only storage CT channel status word CTC conditional terminate CU Control Unit CVG Character Vector Generator DA dark DAB darkable register address register DAC digital-to-analog converter DAE darkenable register address enable DAF darkenable register address mask DAU Data Adapter Unit dc direct current DCP Display Channel Processor DFE Digital End ece decimal decimal divide dec ef decimal overflow DG Display Generator Disc disconnect delay D10 display dark disable DX first byte in a series of destination bytes DX+ second byte in a series of destination bytes DX- third byte in a series of destination bytes ELC element check end op end operation EO end of block EOL End-of-Line EPO emergency power off ERLST expected result EXC Executive Control Program exp on/off exp on/off exp on/off exp on/off F fume FEDOM Field Engineering Maintenance Directions Manual FEDOM Field Engineering Manual of Instruction FEMM Field Engineering Maintenance Manual FETOM Field Engineering Theory of Operation Manual FETOM Field Engineering Operation Manual fault-point overflow FLT fault locating test flash dir floating-point divide PMFTON Format New PMFTOF Format Old PMFW Format Weather FPR floating-point register frac fraction
GIS general initialization sequence
GPR general-purpose register
hex hexadecimal
Hz Hertz
IC instruction counter
ICR inhibit carrier return
IDES inhibit display element stop
I-Fetch instruction fetching
ILC instruction length code
ILOG inhibit login stop
Init initial
I/O input/output
IOCE Input/Output Control Element
IPL initial program load
K kilo; also relay
kHz kilohertz
LAB logical address bus
LADS Logic Automation Documentation System
LAL local storage address latch
LAR local storage address register
LC lower case
LF line feed
LOG login stop
LS local store
LSWR local storage working register
MACH maintenance and channel (storage)
max maximum
MC machine check
MCW maintenance control word
MHz megahertz
MMSC maintenance mode stop clock
Mpla Multiple
MPR multiplier
MPX multiplex
ms millisecond
NDT new descriptor tables
no op no operation
NRM new refresh memory
NRMA new refresh memory address
ns nanosecond
Obs on battery signal
QDT old descriptor tables
op code operation code
op operation
opend opened
ORM old refresh memory
ORMA old refresh memory address
OTC out of tolerance check
P parity
PAA parallel adder A-side
PAB parallel adder B-side
PAL parallel adder latch
PB pushbutton
pf picofarad
PK power contactor
PP partial product
PQ partial quotient
prw op privileged operation
proc program
prog program
PROSAR A previous read-only storage address register A
PROSAR B previous read-only storage address register B
PS power supply
PSA preferential storage address
PSBAR preferential storage base address
PSW program status word
PVD Plan View Display
R register
RCU Reconfiguration Control Unit
reg register
RKM Radar Keyboard Multiplexor
ROS read-only storage
ROSAR read-only storage address register
ROSBR read-only storage backup register
ROSISR read-only storage data register
RST Reset
SAA serial adder A-side
SAB storage address bus, also serial adder B-side
SAL serial adder latch
SATR set Address Translation Register
SB serial adder bus
SBB serial adder bus B
SC System Console
SCI storage control interface
SCON set Configuration Control Register
SCOPEX scope index
SCR silicon-controlled rectifier
SDR storage data bus in
SDBO storage data bus out
SE Storage Element
Sel select
Serv service
Sign significance
SLT solid logic technology
SMAC system maintenance monitor console
SMS standard modular system
SRS scan out read-only storage
spec specification
SRL Systems Reference Library
SSU storage switching unit
STAT status trigger
STC ST register byte counter
str storage
sync synchronizing
T transformer
TC time clock (interval timer)
TCU tape control unit
TDX table byte specified by DX
TDX+1 table byte specified by DX+1
TIC transfer in channel
TN test number
TR tilt/rotate
TU tape unit
uc upper case
uf microfarad
usec microsecond
UT unconditional terminate
V volt
VFL variable-field length
VFR visual flight rules
Xlat translate
Y greater than or equal to
Y greater than or equal to
Z less than or equal to
Z less than or equal to
a equal to
a not equal to
and
Diagram 1-2. ROS Test Flowchart (Sheet 1 of 3)
Diagram 1-2: ROS Test Flowchart (Sheet 2 of 3)
Diagram 1-2. ROS Test Flowchart (Sheet 3 of 3)
Diagram 1-3: FLT Flowchart
Diagram 3-1. Fixed Point Instruction Data Flow
Diagram 3-2. Floating-Point Instruction Data Flow
Diagram 3-3. Decimal and Logical Instruction Data Flow
Diagram 3-5. Status Switching Instruction Data Flow
Diagram 3-6. Input/Output Instruction Data Flow
Diagram 4-2. Reference Oscillator

Notes:
1. Heavy portion of timing signals indicates the active portion for the signal function.
2. The two letter notation within the AND's is the block which number an AID KO207.
 Inverter block is part of logic block.
Diagram 4-3. CE Clock Signal Generator

- If line is positive, oscillator output is positive and not running. When line goes negative, oscillator output goes negative and starts stable oscillation.

- Not inhibit OSC, On Wrap, Or Logout

- Not Wrap Mode
 - Inhibit Osc Set Outstanding

- Hardstop Inhibit OSC

- Frequency Alteration Switch

- Frequency Alteration Circuit

- Machine reset

- To Diagram 4-2

- 5.0-mHz OSCILLATOR
 - Adjust for symmetrical 100-ns/100-ns clock signal.
 - Adjust for 200-ns period clock signal (Null-Comparator)

- Symmetry Observation Point

- Gated Oscillator
 - (Basic Clock Pulse)

- 5.0-mHz REFERENCE
 - (From crystal-controlled; same as shown in Diagram 4-2.)
 - Null Observation Point

- 5.0-mHz Comparator Circuit

- 500-kHz Low-Pass Filter

- Filter converts square wave input to a sine wave.
Diagram 4-101. ROSAR (0-5) Logic
Diagram 4-104. ROSAR (13) Logic
Diagram 4-105. ROS Addressing and Data Flow (Sheet 1 of 2)
Diagram 4-106. Array Drivers

Select 0

Select 1

Select 2

Array Drivers
3 through 10
Not Shown

Select 19

Select 20

Select 21

Drive 0 PS-QPA

Drive 1 PS-QPF

Drive 43 PS-QPA

Drive 43 PS-QPF

Drive 43 PS-QPF

Drive 43 PS-QPF

Drive 43 PS-QPF
Diagram 4-107. ROS Data Register
Diagram 4-201. Q-Register B-Field Transfer Controls

Diagram 4-202. R-Register Transfer to LAL
Diagram 4-203. E-Register Incrementer, Bits 14 and 15
Diagram 4-207. AB Byte Counter
Diagram 4-210. CCR Output Logic and Control Paths (Sheet 3 of 3)
Diagram 4-211. LM to XY Reformatting via Mixer (Sheet 2 of 2)
Diagram 4-212. XY Register Parity Prediction Logic
Diagram 4-213. Select Register - Select Signal Generation and Response Route.
Diagram 4-301, Local Storage Read/Write Controls
Diagram 4-302. 9020 Out Bus to LS Data Bus Getting Logic.
Diagram 4-303, LS Bus Parity Generation or Check
Diagram 4-402. Carry Lookahead Logic, SAL(0-3)

Diagram 4-403. Decimal Add 6 Logic
Diagram 4-404. Decimal Correction Logic For SAL (0-3)

Diagram 4-405. Invalid Digit Logic
Diagram 4-406. Logical Functions, SAL (0)

Diagram 4-407. Serial Adder Parity Predict Logic
Diagram 4-408. Serial Adder Product-Quotient Bit Logic

A. T-Field Gate Control Trigger;
 A' Micro-order (1111);
 Decoder T11;
 Gate K102-63 to Parallel Adder B-Side (32-63).

B. U-Field Gate Control Trigger;
 A' Micro-order (1110);
 Decoder U13;
 Gate T128-63 to Parallel Adder A-Side (32-63).

Diagram 4-409. Gate Control Triggers for 'B + T' Micro-order
Diagram 4-10. Parallel Adder Bit-Position Logic (Bit 47)

Note: A "not group 4 carry" signal indicates that an extored carry from group 4 progresses 4 positions. All, 48, 56, and 63 has not occurred, thus allowing a propagated carry (carry-latch-group 15) to enter bit position 47. The diagram indicates: 1. Propagation (carry group 4) 2. Progression (carry group 4) 3. Propagation (carry group 3) 4. Progression (carry group 3) 5. Propagation (carry group 2) 6. Progression (carry group 2) 7. Propagation (carry group 1) 8. Progression (carry group 1) 9. Propagation (carry group 0) 10. Progression (carry group 0)
Diagram 4-411. Parallel Adder Carry Lookahead Logic
Diagram 4-412. Parity Generation, PAL (48-55)

Parity Prediction, PAL(48-55)

- **Input Channels:**
 - 48 Hal-Sum
 - Not 48 Hal-Sum
 - Not 48 Bit Transf
 - Not 5 Bit Transf
 - Not 5 Bit Transf

- **Logic Blocks:**
 - A: OR
 - B: AND

- **Parity Detection Logic:**
 - **A.** Parity Prediction, PAL(48-55)
 - Parity Predicted
 - PAL(48-55)

- **Shift Logic:**
 - **B.** Parity Latch-Shift Logic, PAL(48-55)
 - Right 4-Shift
 - Left 4-Shift

- **Output:**
 - Parity
 - FI Clock Extended
 - Zero Shift
 - Not 48-55 Parity

Notes:
- Duplicate logic is used for generating parity-predicted signals of opposite polarity simultaneously (without use of additional inverter function).
Diagram 4-13. Parallel Adder Half-Sum Checking Logic, PA (48-55)
Diagram 4-414, Parallel Adder Full-Sum Checking Logic, PA(48-55)
Diagram 4-415. Parallel Adder Excess 6 Logic

Diagram 4-416. Parallel Adder Set-Condition-Code Logic

Note: This diagram illustrates how the condition codes are set; it is not intended to be a detailed diagram.
Diagram 4-501. STAT B Logic
Diagram 4-602. Address Decode and Gating Logic
Diagram 4-603. SCI Control Logic for CE Clock
Diagram 4-605. Storage Timeout Logic

Notes:
1. "Storage Timeout" is activated if "Select outstanding" remains active through two 80-cycle pulses.
2. "Select outstanding" may come at any time for the example shown; it is for the best output of time necessary to see "Storage Timeout".
3. "Select outstanding" is deasserted by "select" from storage.
Diagram 4-609. Page Control Logic and Timing
Diagram 4-610. SAB Parity Conversion Logic
Diagram 4-611. Servicing of Storage Requests in Single-Cycle Mode (Sheet 2 of 2)
Diagram 4.612. Servicing of Storage Requests in Single-Cycle Mode